What is the difference between a sub-caliber projectile and a conventional armor-piercing projectile. Sub-caliber projectiles of the present and future Armor-piercing and sub-caliber projectile difference

In World of Tanks, vehicles can be equipped with different types of shells, such as armor-piercing, sub-caliber, HEAT and high-explosive fragmentation. In this article, we will consider the features of the action of each of these shells, the history of their invention and use, the pros and cons of their use in a historical context. The most common and, in most cases, regular shells on the vast majority of vehicles in the game are armor-piercing shells (BB) caliber device or sharp-headed.
According to the Military Encyclopedia of Ivan Sytin, the idea of ​​a prototype of the current armor-piercing shells belongs to the officer of the Italian fleet Bettolo, who in 1877 proposed using the so-called " bottom shock tube for armor-piercing shells"(Before that, the shells were either not equipped at all, or the explosion of the powder charge was calculated on heating the head of the projectile when it hit the armor, which, however, was far from always justified). After breaking through the armor, the damaging effect is provided by shell fragments heated to a high temperature, and armor fragments. During the Second World War, shells of this type were easy to manufacture, reliable, had a fairly high penetration, and worked well against homogeneous armor. But there was also a minus - on the inclined armor, the projectile could ricochet. The thicker the armor, the more armor fragments are formed when pierced by such a projectile, and the higher the lethal force.


The animation below illustrates the action of a chamber sharp-headed armor-piercing projectile. It is similar to an armor-piercing sharp-headed projectile, however, in the rear part there is a cavity (chamber) with an explosive charge of TNT, as well as a bottom fuse. After breaking through the armor, the projectile explodes, hitting the crew and equipment of the tank. In general, this projectile retained most of the advantages and disadvantages of the AR projectile, featuring a significantly higher armor effect and slightly lower armor penetration (due to the lower weight and strength of the projectile). During the War, the bottom fuses of the shells were not perfect enough, which sometimes led to a premature explosion of the shell before penetrating the armor, or to the failure of the fuse after penetration, but the crew, in case of penetration, rarely became easier from this.

Sub-caliber projectile(BP) has a rather complex design and consists of two main parts - an armor-piercing core and a pallet. The task of the pallet, made of mild steel, is to accelerate the projectile in the bore. When the projectile hits the target, the pallet is crushed, and the heavy and hard sharp-headed core made of tungsten carbide pierces the armor.
The projectile does not have a bursting charge, ensuring that the target is hit by fragments of the core and armor fragments heated to high temperatures. Sub-caliber projectiles have a significantly lower weight compared to conventional armor-piercing projectiles, which allows them to accelerate in the gun barrel to significantly higher speeds. As a result, penetration sub-caliber shells turns out to be significantly higher. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.
At the same time, sub-caliber shells have a number of disadvantages. Their shape resembled a coil (there were shells of this type and a streamlined shape, but they were much less common), which greatly worsened the ballistics of the projectile, in addition, a light projectile quickly lost speed; as a result, at long distances, the armor penetration of sub-caliber shells dropped dramatically, turning out to be even lower than that of classic armor-piercing shells. During the Second World War, sabots did not work well on sloped armor, because under the influence of bending loads, the hard but brittle core easily broke. The armor-piercing effect of such shells was inferior to armor-piercing caliber shells. Sub-caliber projectiles of small caliber were ineffective against armored vehicles that had protective shields made of thin steel. These shells were expensive and difficult to manufacture, and most importantly, scarce tungsten was used in their manufacture.
As a result, the number of sub-caliber shells in the ammunition load of guns during the war years was small, they were allowed to be used only to destroy heavily armored targets at short distances. The German army was the first to use sub-caliber shells in small quantities in 1940 during the fighting in France. In 1941, faced with heavily armored Soviet tanks, the Germans switched to the widespread use of sub-caliber shells, which significantly increased the anti-tank capabilities of their artillery and tanks. However, the shortage of tungsten limited the release of shells of this type; as a result, in 1944, the production of German sub-caliber shells was discontinued, while most of the shells fired during the war years had a small caliber (37-50 mm).
In an attempt to get around the problem of tungsten shortages, the Germans produced Pzgr.40(C) sub-caliber shells with a hardened steel core and surrogate Pzgr.40(W) shells with an ordinary steel core. In the USSR, a fairly mass production of sub-caliber shells, created on the basis of captured German ones, began at the beginning of 1943, and most of the shells produced were of 45 mm caliber. The production of these shells of larger calibers was limited by the shortage of tungsten, and they were issued to the troops only when there was a threat of an enemy tank attack, and a report was required for each spent shell. Also, sub-caliber shells were used to a limited extent by the British and American armies in the second half of the war.

HEAT projectile(CS).
The principle of operation of this armor-piercing ammunition is significantly different from the principle of operation of kinetic ammunition, which includes conventional armor-piercing and sub-caliber projectiles. A cumulative projectile is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. At the front of the projectile, explosives have a goblet-shaped recess lined with metal (usually copper). The projectile has a sensitive head fuse. When a projectile collides with armor, an explosive is detonated. At the same time, the lining metal is melted and compressed by an explosion into a thin jet (pestle), flying forward at an extremely high speed and penetrating armor. Armored action is provided by a cumulative jet and splashes of armor metal. The hole of the HEAT projectile is small and has melted edges, which has led to a common misconception that HEAT projectiles “burn through” the armor.
The penetration of a HEAT projectile does not depend on the velocity of the projectile and is the same at all distances. Its production is quite simple, the production of the projectile does not require the use a large number scarce metals. The cumulative projectile can be used against infantry and artillery as a high-explosive fragmentation projectile. At the same time, cumulative shells during the war years were characterized by numerous shortcomings. The manufacturing technology of these projectiles was not sufficiently developed, as a result, their penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was characterized by instability. The rotation of the projectile at high initial speeds made it difficult for the formation of a cumulative jet, as a result, the cumulative projectiles had a low initial velocity, a small effective range shooting and high dispersion, which was also facilitated by the non-optimal form of the projectile head from the point of view of aerodynamics (its configuration was determined by the presence of a notch).
The big problem was the creation of a complex fuse, which should be sensitive enough to quickly undermine the projectile, but stable enough not to explode in the barrel (the USSR was able to work out such a fuse, suitable for use in powerful tank and anti-tank guns, only at the end of 1944 ). The minimum caliber of a cumulative projectile was 75 mm, and the effectiveness of cumulative projectiles of this caliber was greatly reduced. Mass production of HEAT shells required the deployment of large-scale production of hexogen.
The most massive HEAT shells were used by the German army (for the first time in the summer-autumn of 1941), mainly from 75 mm caliber guns and howitzers. Soviet army used cumulative shells, created on the basis of captured German ones, from 1942-43, including them in the ammunition of regimental guns and howitzers that had a low muzzle velocity. English and american army used shells of this type, mainly in the ammunition of heavy howitzers. Thus, in the Second World War (in contrast to the present time, when improved projectiles of this type form the basis of the ammunition load of tank guns), the use of cumulative projectiles was quite limited, mainly they were considered as a means of anti-tank self-defense of guns that had low initial speeds and low armor penetration by traditional projectiles (regimental guns, howitzers). At the same time, all participants in the war actively used other anti-tank weapons with cumulative ammunition - grenade launchers, aerial bombs, hand grenades.

High-explosive fragmentation projectile(OF).
It was developed in the late 40s of the twentieth century in the UK to destroy enemy armored vehicles. It is a thin-walled steel or steel-cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Unlike armor-piercing shells, high-explosive shells did not have a tracer. Upon hitting the target, the projectile explodes, hitting the target with fragments and a blast wave, either immediately - a fragmentation action, or with some delay (which allows the projectile to go deeper into the ground) - a high-explosive action. The projectile is intended mainly to destroy openly located and covered infantry, artillery, field shelters (trenches, wood-and-earth firing points), unarmored and lightly armored vehicles. Well-armored tanks and self-propelled guns are resistant to high-explosive fragmentation shells.
The main advantage of a high-explosive fragmentation projectile is its versatility. This type projectiles can be used effectively against the vast majority of targets. Also, the advantages include lower cost than armor-piercing and cumulative shells of the same caliber, which reduces the cost of combat operations and firing practice. On a direct hit on vulnerable areas(turret hatches, radiator of the engine compartment, knockout screens of the aft ammunition rack, etc.) HE can disable the tank. Also, the hit of large-caliber shells can cause the destruction of lightly armored vehicles, and damage to heavily armored tanks, consisting in cracking of armor plates, jamming of the turret, failure of instruments and mechanisms, injuries and shell shock to the crew.

Projectiles are called sub-caliber projectiles, the caliber of which is less than the caliber of the gun barrel. The idea of ​​sub-caliber shells arose a long time ago; the main goal is to obtain the highest possible initial speed, and hence the maximum range of the projectile. Sub-caliber projectiles are designed so that specially designed light medium-caliber projectiles can be ejected from larger-caliber guns.
The projectile is supplied with a pallet, the diameter of which corresponds to the diameter of the gun. The weight of the projectile together with the pallet is much less than the regular one.
The powder charge is the same as for a regular shot of a given caliber gun. The design of the sub-caliber projectile makes it possible to obtain a significantly higher initial velocity of 1,500 - 1,800 m/s without resorting to structural changes to the gun. Under the action of centrifugal force and due to air resistance, the pallet, after leaving the bore, is separated from the projectile, which travels a much greater distance than a conventional (caliber) projectile of this gun. A significant initial velocity in this case is used to destroy such a strong barrier as the armor of a tank, when a durable projectile with great manpower (velocity at the moment of impact on the armor) is required.
The property of sub-caliber shells - a high initial speed - was used in anti-tank artillery.

Rice. 1 3.7 cm armor-piercing tracer mod. 40 (3.7 cm Pzgr. 40)

1 - core; 2 - pallet; 3 - plastic tip; 4 - ballistic tip; 5 - tracer.

Rice. 2. 75-mm armor-piercing tracer mod. 41 (75/55cm Pzgr. 41)

1 - pallet; 2 - core; 3 - screw head;
4 - ballistic tip; 5 - tracer.

Sub-caliber armor-piercing shells are of two types: arr. 40 (Fig. 1) and arr. 41 (Fig. 2). The former apply to conventional 3.7 cm and 5 cm, anti-tank guns, the second - to guns with conical bores - i.e., to a 28 / 20-mm heavy anti-tank rifle mod. 41, and to 75/55 mm anti-tank gun PAK-41. There are shells 7.5 cm Pzgr.41(HK) with tungsten carbide core and 7.5 cm Pzgr.41 (StK) with steel core 7.5 cm Pzgr.41(W) coreless blank. In addition to armor-piercing sabots, high-explosive fragmentation sabots were also produced.
The device shells Pzgr. 40 Pzgr. 41 looks like. The projectile consists of a core -
1, a pallet - 2, a plastic ballistic tip - 3, a metal cap - 4 and a tracer - 5. In sabot armor-piercing shells there is no fuse, explosive charge and copper leading belt.
The core of the projectile is made of an alloy of high hardness and brittleness.
The pallet is made of mild steel.
The ballistic tip, which gives the projectile a streamlined shape, is made of plastic and covered with a metal cap made of an alloy of magnesium and aluminum.

The main difference between shells arr. 40 from shells mod. 41 lies in the design of the pallet. Pallets of shells arr. 40 (Fig. 1) to conventional anti-tank guns (3.7 cm and 5.0 cm with cylindrical barrels) consist of a body with 2 centering annular protrusions. The upper ledge plays the role of a leading belt, the lower one is a centering thickening.

7.5cm Pzgr.41

2.8cm sPzB-41

3.7cm Pzgr. 40

When the projectile is fired and moves along the channel near the barrel, the upper ledge of the pallet, which has a diameter slightly larger than the diameter of the gun, cuts along the fields, crashing into the rifling of the gun, gives the projectile a rotational
movement. The lower protrusion of the pallet, which has a diameter of the bore, centers the projectile in the bore, i.e., prevents it from skewing.
Pallets of shells arr. 41 (see fig. 2) to systems with tapered bores consist of a body with 2 tapered centering annular lugs. The diameters of the protrusions are equal to the larger diameter
barrel channel (near the breech). The cylindrical part of the pallet is equal to the smaller diameter of the bore (near the muzzle). When the projectile moves along the tapered barrel, both protrusions are compressed and cut into the rifling, while providing rotary motion projectile in flight.

Weight of projectiles mod. 40 and arr. 41 is significantly less than the weight of conventional armor-piercing shells of the corresponding calibers. Combat (powder) charge is used the same as for conventional shells. As a result, shells arr. 40 and 41 have significantly higher initial velocities than conventional armor-piercing shells. This provides an increase in armor-piercing action. However, the ballistically unfavorable shape of the projectile contributes to a rapid loss of speed in flight, and therefore the firing of such projectiles at distances exceeding 400-500 m is not very effective.
The effect of projectiles on an obstacle (armor) is the same for both types.
When a projectile hits an obstacle, the ballistic tip and pallet are destroyed,
and the core, having a high speed, as a whole pierces the armor. Having met the second obstacle in the tank - the opposite wall, the core, which already has a low speed, due to
of its fragility, it breaks into pieces and hits the tank crew with its fragments and fragments from the tank's armor. The armor-piercing ability of these shells is much higher than conventional armor-piercing shells and is characterized by the data given in the table.

7.5 cm Pzgr.41W and7.5 cm Pzgr.41 (StK):

Many types of shells are implemented in War Thunder, each of which has its own characteristics. In order to competently compare different shells, choose the main type of ammunition before the battle, and in battle for different purposes in different situations to use suitable shells, you need to know the basics of their design and principle of operation. This article talks about the types of projectiles and their design, as well as gives advice on their use in combat. Do not neglect this knowledge, because the effectiveness of the weapon largely depends on the shells for it.

Types of tank ammunition

Armor-piercing caliber shells

Chamber and solid armor-piercing shells

As the name implies, the purpose of armor-piercing shells is to penetrate armor and thereby hit a tank. Armor-piercing shells are of two types: chamber and solid. Chamber shells have a special cavity inside - a chamber, in which an explosive is located. When such a projectile penetrates the armor, the fuse is triggered and the projectile explodes. The crew of an enemy tank is hit not only by armor fragments, but also by explosions and fragments of a chamber shell. The explosion does not occur immediately, but with a delay, thanks to which the projectile has time to fly into the tank and explode there, causing the most damage. In addition, the sensitivity of the fuse is set to, for example, 15 mm, that is, the fuse will only work if the thickness of the armor being penetrated is above 15 mm. This is necessary so that the chamber projectile explodes in the fighting compartment when it breaks through the main armor, and does not cock against the screens.

A solid projectile does not have a chamber with an explosive, it is just a metal blank. Of course, solid shells inflict much less damage, but they penetrate a greater thickness of armor than similar chamber shells, since solid shells are more durable and heavier. For example, the armor-piercing chamber projectile BR-350A from the F-34 cannon pierces 80 mm at a right angle at close range, and the solid BR-350SP projectile as much as 105 mm. The use of solid shells is very characteristic of the British school of tank building. Things got to the point that the British removed explosives from American 75-mm chamber shells, turning them into solid ones.

The lethal force of solid shells depends on the ratio of the thickness of the armor and the armor penetration of the shell:

  • If the armor is too thin, then the projectile will pierce through it and damage only those elements that it hits along the way.
  • If the armor is too thick (on the border of penetration), then small non-lethal fragments are formed that will not cause much harm.
  • Maximum armor action - in case of penetration of sufficiently thick armor, while the penetration of the projectile should not be completely used up.

Thus, in the presence of several solid shells, the best armor action will be with the one with greater armor penetration. As for chamber shells, the damage also depends on the amount of explosive in TNT equivalent, as well as on whether the fuse worked or not.


Sharp-headed and blunt-headed armor-piercing shells

An oblique blow to the armor: a - a sharp-headed projectile; b - blunt projectile; c - arrow-shaped sub-caliber projectile

Armor-piercing shells are divided not only into chamber and solid shells, but also into sharp-headed and dumb-headed ones. Pointed shells pierce thicker armor at a right angle, since at the moment of impact with the armor, all the impact force falls on a small area of ​​the armor plate. However, the efficiency of work on sloping armor in sharp-headed projectiles is lower due to a greater tendency to ricochet at large angles of impact with the armor. Conversely, blunt-headed shells penetrate thicker armor at an angle than sharp-headed shells, but have less armor penetration at right angles. Let's take for example the armor-piercing chamber shells of the T-34-85 tank. At a distance of 10 meters, the BR-365K sharp-headed projectile penetrates 145 mm at a right angle and 52 mm at an angle of 30 °, and the BR-365A blunt-headed projectile penetrates 142 mm at a right angle, but 58 mm at an angle of 30 °.

In addition to sharp-headed and blunt-headed shells, there are sharp-headed shells with an armor-piercing tip. When meeting armor plate at a right angle, such a projectile works like a sharp-headed projectile and has good armor penetration compared to a similar blunt-headed projectile. When hitting sloping armor, the armor-piercing tip “bites” the projectile, preventing ricochet, and the projectile works like a dumb-ass.

However, sharp-headed shells with an armor-piercing tip, like blunt-headed shells, have a significant drawback - greater aerodynamic resistance, due to which armor penetration drops more at a distance than sharp-headed shells. To improve aerodynamics, ballistic caps are used, due to which armor penetration is increased at medium and long distances. For example, on the German 128 mm KwK 44 L/55 gun, two armor-piercing chamber shells are available, one with a ballistic cap and the other without it. Armor-piercing sharp-headed projectile with an armor-piercing tip PzGr at a right angle pierces 266 mm at 10 meters and 157 mm at 2000 meters. But an armor-piercing projectile with an armor-piercing tip and a ballistic cap PzGr 43 at a right angle pierces 269 mm at 10 meters and 208 mm at 2000 meters. In close combat, there are no special differences between them, but at long distances the difference in armor penetration is huge.

Armor-piercing chamber shells with an armor-piercing tip and a ballistic cap are the most versatile type of armor-piercing ammunition, which combines the advantages of sharp-headed and blunt-headed projectiles.

Table of armor-piercing shells

Sharp-headed armor-piercing shells can be chamber or solid. The same applies to blunt-headed shells, as well as sharp-headed shells with an armor-piercing tip, and so on. Let's summarize all the possible options in a table. Under the icon of each projectile, the abbreviated names of the projectile type are written in English terminology, these are the terms used in the book "WWII Ballistics: Armor and Gunnery", according to which many shells in the game are configured. If you hover over the abbreviated name with the mouse cursor, a hint with decoding and translation will appear.


dumb-headed
(with ballistic cap)

sharp-headed

sharp-headed
with armor-piercing tip

sharp-headed
with armor-piercing tip and ballistic cap

Solid projectile

APBC

AP

APC

APCBC

Chamber projectile


APHE

APHEC

Sub-caliber shells

Coil sub-caliber projectiles

The action of the sub-caliber projectile:
1 - ballistic cap
2 - body
3 - core

Armor-piercing caliber shells have been described above. They are called caliber because the diameter of their warhead is equal to the caliber of the gun. There are also armor-piercing sub-caliber shells, the warhead diameter of which is smaller than the caliber of the gun. The simplest type of sub-caliber projectiles is coil (APCR - Armor-Piercing Composite Rigid). reel sub-caliber projectile consists of three parts: body, ballistic cap and core. The body serves to disperse the projectile in the barrel. At the moment of meeting with the armor, the ballistic cap and the body are crushed, and the core pierces the armor, hitting the tank with shrapnel.

At close range, sub-caliber shells penetrate thicker armor than caliber shells. Firstly, the sabot projectile is smaller and lighter than a conventional armor-piercing projectile, thanks to which it accelerates to higher speeds. Secondly, the core of the projectile is made of hard alloys with a high specific gravity. Thirdly, due to the small size of the core at the moment of contact with the armor, the impact energy falls on a small area of ​​​​the armor.

But coil sub-caliber shells also have significant drawbacks. Due to their relatively light weight, sub-caliber shells are ineffective at long distances, they lose energy faster, hence the drop in accuracy and armor penetration. The core does not have an explosive charge, therefore, in terms of armor action, sub-caliber shells are much weaker than chamber shells. Finally, sub-caliber shells do not work well against sloped armor.

Coil sub-caliber shells were effective only in close combat and were used in cases where enemy tanks were invulnerable against caliber armor-piercing shells. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.

Sub-caliber projectiles with a detachable pallet

APDS projectile and its core

Sectional view of an APDS projectile, showing the ballistic-tipped core

Armor-Piercing Discarding Sabot (APDS) - a further development of the design of sabot projectiles.

Coil sub-caliber projectiles had a significant drawback: the hull flew along with the core, increasing aerodynamic drag and, as a result, a drop in accuracy and armor penetration at a distance. For sub-caliber shells with a detachable pallet, a detachable pallet was used instead of the body, which first dispersed the projectile in the gun barrel, and then separated from the core by air resistance. The core flew to the target without a pallet and, due to the significantly lower aerodynamic resistance, did not lose armor penetration at a distance as quickly as coil sub-caliber shells.

During the Second World War, sub-caliber shells with a detachable pallet were distinguished by record-breaking armor penetration and flight speed. For example, the Shot SV Mk.1 sub-caliber projectile for the 17-pounder accelerated to 1203 m/s and pierced 228 mm of soft armor at a right angle at 10 meters, while the Shot Mk.8 armor-piercing caliber projectile only 171 mm under the same conditions.

Sub-caliber feathered shells

Separation of the pallet from BOPS

BOPS projectile

Armor-piercing feathered sabot projectile (APFSDS - Armor-Piercing Fin-Stabilized Discarding Sabot) - the most modern look armor-piercing projectiles, designed to destroy heavily armored vehicles protected the latest species armor and active protection.

These projectiles are a further development of sabot projectiles with a detachable pallet, they are even longer and have a smaller cross section. Spin stabilization is not very effective for high aspect ratio projectiles, so armor piercing piercing piercing sabots (abbreviated as BOPS) are stabilized by the fins and are generally used to fire smoothbore guns (however, early BOPS and some modern ones are designed to fire rifled guns).

Modern BOPS projectiles have a diameter of 2-3 cm and a length of 50-60 cm. To maximize the specific pressure and kinetic energy of the projectile, high-density materials are used in the manufacture of ammunition - tungsten carbide or an alloy based on depleted uranium. The muzzle velocity of the BOPS is up to 1900 m / s.

Concrete-piercing projectiles

A concrete-piercing projectile is an artillery projectile designed to destroy long-term fortifications and solid buildings of capital construction, as well as to destroy the manpower hidden in them and military equipment enemy. Often, concrete-piercing shells were used to destroy concrete pillboxes.

In terms of design, concrete-piercing shells occupy an intermediate position between armor-piercing chamber and high-explosive fragmentation shells. Compared to high-explosive fragmentation shells of the same caliber, with a close destructive potential of the explosive charge, concrete-piercing ammunition has a more massive and durable body, which allows them to penetrate deep into reinforced concrete, stone and brick barriers. Compared to armor-piercing chamber shells, concrete-piercing shells have more explosives, but a less durable body, so concrete-piercing shells are inferior to them in armor penetration.

The G-530 concrete-piercing projectile weighing 40 kg is included in the ammunition load of the KV-2 tank, the main purpose of which was the destruction of pillboxes and other fortifications.

HEAT rounds

Rotating HEAT projectiles

The device of the cumulative projectile:
1 - fairing
2 - air cavity
3 - metal cladding
4 - detonator
5 - explosive
6 - piezoelectric fuse

The cumulative projectile (HEAT - High-Explosive Anti-Tank) in terms of the principle of operation differs significantly from kinetic ammunition, which includes conventional armor-piercing and sub-caliber projectiles. It is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. In front of the projectile in explosives there is a goblet-shaped or cone-shaped recess lined with metal (usually copper) - a focusing funnel. The projectile has a sensitive head fuse.

When a projectile collides with armor, an explosive is detonated. Due to the presence of a focusing funnel in the projectile, part of the explosion energy is concentrated at one small point, forming a thin cumulative jet consisting of the metal of the lining of the same funnel and explosion products. The cumulative jet flies forward at a tremendous speed (approximately 5,000 - 10,000 m / s) and passes through the armor due to the enormous pressure it creates (like a needle through oil), under the influence of which any metal enters a state of superfluidity or, in other words, leads itself as a liquid. The armored damaging effect is provided both by the cumulative jet itself and by hot drops of pierced armor squeezed inward.


The most important advantage of a HEAT projectile is that its armor penetration does not depend on the velocity of the projectile and is the same at all distances. That is why cumulative shells were used on howitzers, since conventional armor-piercing shells would be ineffective for them due to their low flight speed. But the cumulative shells of the Second World War also had significant drawbacks that limited their use. The rotation of the projectile at high initial speeds made it difficult to form a cumulative jet, as a result, the cumulative projectiles had a low initial speed, a small effective range and high dispersion, which was also facilitated by the shape of the projectile head, which was not optimal from the point of view of aerodynamics. The manufacturing technology of these shells at that time was not sufficiently developed, so their armor penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was unstable.

Non-rotating (feathered) cumulative projectiles

Non-rotating (feathered) cumulative projectiles (HEAT-FS - High-Explosive Anti-Tank Fin-Stabilised) are a further development of cumulative ammunition. Unlike early cumulative projectiles, they are stabilized in flight not by rotation, but by folding fins. The absence of rotation improves the formation of a cumulative jet and significantly increases armor penetration, while removing all restrictions on the speed of the projectile, which can exceed 1000 m/s. So, for early cumulative shells, typical armor penetration was 1-1.5 calibers, while for post-war shells it was 4 or more. However, feathered projectiles have a slightly lower armor effect compared to conventional HEAT projectiles.

Fragmentation and high-explosive shells

High-explosive shells

A high-explosive fragmentation projectile (HE - High-Explosive) is a thin-walled steel or cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Upon hitting the target, the projectile immediately explodes, hitting the target with fragments and an explosive wave. Compared to concrete-piercing and armor-piercing chamber shells, high-explosive fragmentation shells have very thin walls, but they have more explosives.

The main purpose of high-explosive fragmentation shells is to defeat enemy manpower, as well as unarmored and lightly armored vehicles. High-explosive high-explosive shells of large caliber can be used very effectively to destroy lightly armored tanks and self-propelled guns, as they break through relatively thin armor and incapacitate the crew with the force of the explosion. Tanks and self-propelled guns with anti-projectile armor are resistant to high-explosive fragmentation shells. However, large-caliber projectiles can even hit them: the explosion destroys the tracks, damages the gun barrel, jams the turret, and the crew is injured and shell-shocked.

Shrapnel shells

The shrapnel projectile is a cylindrical body, divided by a partition (diaphragm) into 2 compartments. An explosive charge is placed in the bottom compartment, and spherical bullets are in the other compartment. A tube filled with a slowly burning pyrotechnic composition passes along the axis of the projectile.

The main purpose of the shrapnel projectile is to defeat the enemy's manpower. It happens in the following way. At the moment of the shot, the composition in the tube ignites. Gradually, it burns out and transfers the fire to the explosive charge. The charge ignites and explodes, squeezing out a partition with bullets. The head of the projectile comes off and the bullets fly out along the axis of the projectile, deviating slightly to the sides and hitting the enemy infantry.

In the absence of armor-piercing shells in the early stages of the war, gunners often used shrapnel shells with a tube set "on impact". In terms of its qualities, such a projectile occupied an intermediate position between high-explosive fragmentation and armor-piercing, which is reflected in the game.

Armor-piercing shells

Armor-piercing high-explosive projectile (HESH - High Explosive Squash Head) - a post-war type of anti-tank projectile, the principle of operation of which is based on the detonation of a plastic explosive on the surface of the armor, which causes armor fragments on the back to break off and damage the fighting compartment of the vehicle. An armor-piercing high-explosive projectile has a body with relatively thin walls, designed for plastic deformation when it encounters an obstacle, as well as a bottom fuse. The charge of an armor-piercing high-explosive projectile consists of a plastic explosive that “spreads” over the surface of the armor when the projectile meets an obstacle.

After “spreading”, the charge is detonated by a slow-acting bottom fuse, which causes the destruction of the rear surface of the armor and the formation of spalls that can hit the internal equipment of the vehicle or crew members. In some cases, penetrating armor can also occur in the form of a puncture, a breach, or a broken plug. The penetrating ability of an armor-piercing high-explosive projectile depends less on the angle of the armor in comparison with conventional armor-piercing projectiles.

ATGM Malyutka (1 generation)

Shillelagh ATGM (2 generations)

Anti-tank guided missiles

An anti-tank guided missile (ATGM) is a guided missile designed to destroy tanks and other armored targets. The former name of the ATGM is "anti-tank guided missile". ATGMs in the game are solid-propellant missiles equipped with on-board control systems (operating on the operator's commands) and flight stabilization, devices for receiving and decrypting control signals received via wires (or via infrared or radio command control channels). Warhead cumulative, with armor penetration of 400-600 mm. The flight speed of missiles is only 150-323 m / s, but the target can be successfully hit at a distance of up to 3 kilometers.

The game features ATGMs of two generations:

  • First generation (manual command system guidance)- in reality, they are manually controlled by the operator using a joystick, eng. MCLOS. In realistic and simulation modes, these missiles are controlled using the WSAD keys.
  • Second generation (semi-automatic command guidance system)- in reality and in all game modes, they are controlled by pointing the sight at the target, eng. SACLOS. Either the center of the crosshair serves as a sight in the game optical sight, or a large white round marker (reload indicator) in third person view.

In arcade mode, there is no difference between the generations of rockets, they are all controlled with the help of a sight, like second-generation rockets.

ATGMs are also distinguished by the launch method.

  • 1) Launched from the channel of the tank barrel. To do this, you need either a smooth barrel: an example is the smooth barrel of a 125-mm gun of the T-64 tank. Or a keyway is made in a rifled barrel, where a rocket is inserted, for example, in the Sheridan tank.
  • 2) Launched from guides. Closed, tubular (or square), for example, like the RakJPz 2 tank destroyer with the HOT-1 ATGM. Or open, rail (for example, like the IT-1 tank destroyer with the 2K4 Dragon ATGM).

As a rule, the more modern and the larger the caliber of the ATGM, the more it penetrates. ATGMs were constantly improved - manufacturing technology, materials science, and explosives improved. The penetrating effect of ATGMs (as well as HEAT rounds) can be completely or partially neutralized by combined armor and dynamic protection. As well as special anti-cumulative armor screens located at some distance from the main armor.

Appearance and device of shells

    Armor-piercing sharp-headed chamber projectile

    Sharp-headed projectile with armor-piercing tip

    Sharp-headed projectile with armor-piercing tip and ballistic cap

    Armor-piercing blunt projectile with ballistic cap

    Sub-caliber projectile

    Sub-caliber projectile with detachable pallet

    HEAT projectile

    Non-rotating (feathered) cumulative projectile

  • A denormalization phenomenon that increases the path of a projectile through armor

    Starting with game version 1.49, the effect of shells on sloped armor has been redesigned. Now the value of the reduced armor thickness (armor thickness ÷ cosine of the angle of inclination) is valid only for calculating the penetration of HEAT projectiles. For armor-piercing and especially sub-caliber shells, the penetration of sloping armor was significantly reduced due to the denormalization effect, when a short shell turns around during penetration, and its path in the armor increases.

    So, at an angle of inclination of the armor of 60 °, penetration of all shells fell by about 2 times. Now this is true only for cumulative and armor-piercing high-explosive shells. For armor-piercing shells, penetration in this case drops by 2.3-2.9 times, for conventional sub-caliber shells - by 3-4 times, and for sub-caliber shells with a detachable pallet (including BOPS) - by 2.5 times.

    List of shells in order of deterioration of their work on sloped armor:

    1. Cumulative And armor-piercing high-explosive- the most efficient.
    2. Armor-piercing blunt And armor-piercing sharp-headed with an armor-piercing tip.
    3. Armor-piercing sub-caliber with detachable pallet And BOPS.
    4. Armor-piercing sharp-headed And shrapnel.
    5. Armor-piercing sub-caliber- the most inefficient.

    Here, a high-explosive fragmentation projectile stands apart, in which the probability of penetrating the armor does not depend on its angle of inclination at all (provided that no ricochet has occurred).

    Armor-piercing shells

    For such projectiles, the fuse is cocked at the moment of penetration of the armor and undermines the projectile after a certain time, which ensures a very high armor effect. The parameters of the projectile indicate two important: fuse sensitivity and fuse delay.

    If the thickness of the armor is less than the sensitivity of the fuse, then the explosion will not occur, and the projectile will work like a regular solid one, damaging only those modules that are in its path, or simply fly through the target without causing damage. Therefore, when firing at unarmored targets, chamber shells are not very effective (as well as all others, except for high-explosive and shrapnel).

    The fuse delay determines the time after which the projectile will explode after breaking through the armor. Too little delay (in particular, for the Soviet MD-5 fuse) leads to the fact that when it hits a tank attachment (screen, track, undercarriage, caterpillar), the projectile explodes almost immediately and does not have time to penetrate the armor. Therefore, when firing at shielded tanks, it is better not to use such shells. Too much delay of the fuse can cause the projectile to go right through and explode outside the tank (although such cases are very rare).

    If a chamber projectile is detonated in a fuel tank or in an ammunition rack, then with a high probability an explosion will occur and the tank will be destroyed.

    Armor-piercing sharp-headed and blunt-headed projectiles

    Depending on the shape of the armor-piercing part of the projectile, its tendency to ricochet, armor penetration and normalization differ. General rule: blunt-headed shells are best used on opponents with sloped armor, and sharp-headed ones - if the armor is not sloped. However, the difference in armor penetration in both types is not very large.

    The presence of armor-piercing and / or ballistic caps significantly improves the properties of the projectile.

    Sub-caliber shells

    This type of projectile is distinguished by high armor penetration at short distances and a very high flight speed, which makes it easier to shoot at moving targets.

    However, when armor is penetrated, only a thin hard-alloy rod appears in the armored space, which causes damage only to those modules and crew members in which it hits (unlike an armor-piercing chamber projectile, which fills everything with fragments fighting compartment). Therefore, in order to effectively destroy a tank with a sub-caliber projectile, it is necessary to shoot at its weak spots: engine, ammunition rack, fuel tanks. But even in this case, one hit may not be enough to disable the tank. If you shoot at random (especially at the same point), it may take a lot of shots to disable the tank, and the enemy may get ahead of you.

    Another problem with sub-caliber projectiles is a strong loss of armor penetration with distance due to their low mass. Studying the armor penetration tables shows at what distance you need to switch to a regular armor-piercing projectile, which, in addition, has a much greater lethality.

    HEAT rounds

    The armor penetration of these shells does not depend on the distance, which allows them to be used with equal efficiency for both close and long-range combat. However, due to design features, HEAT rounds often have a lower flight speed than other types, as a result of which the shot trajectory becomes hinged, accuracy suffers, and it becomes very difficult to hit moving targets (especially at long distances).

    The principle of operation of the cumulative projectile also determines its not very high damaging ability compared to the armor-piercing chamber projectile: the cumulative jet flies a limited distance inside the tank and inflicts damage only on those components and crew members in which it directly hit. Therefore, when using a cumulative projectile, one should aim just as carefully as in the case of a sub-caliber one.

    If the cumulative projectile hit not the armor, but the hinged element of the tank (screen, track, caterpillar, undercarriage), then it will explode on this element, and the armor penetration of the cumulative jet will significantly decrease (each centimeter of the jet flight in the air reduces armor penetration by 1 mm) . Therefore, other types of shells should be used against tanks with screens, and one should not hope to penetrate the armor with HEAT shells by shooting at the tracks, undercarriage and gun mantlet. Remember that a premature detonation of a projectile can cause any obstacle - a fence, a tree, any building.

    HEAT shells in life and in the game have a high-explosive effect, that is, they also work as high-explosive fragmentation shells of reduced power ( light body gives less shards). Thus, large-caliber cumulative projectiles can be quite successfully used instead of high-explosive fragmentation when firing at lightly armored vehicles.

    High-explosive shells

    The striking ability of these shells depends on the ratio of the caliber of your gun and the armor of your target. Thus, shells with a caliber of 50 mm or less are only effective against aircraft and trucks, 75-85 mm - against light tanks with bulletproof armor, 122 mm - against medium tanks such as T-34, 152 mm - against all tanks, with the exception of head-on shooting at the most armored vehicles.

    However, it must be remembered that the damage inflicted significantly depends on the specific point of impact, so there are cases when even a 122-152 mm caliber projectile causes very minor damage. And in the case of guns with a smaller caliber, in doubtful cases, it is better to use an armor-piercing chamber or shrapnel projectile, which have greater penetration and high lethality.

    Shells - part 2

    What is the best way to shoot? Overview of tank shells from _Omero_


What affects tanks besides grenade launchers and anti-tank systems? How does armor-piercing ammunition work? In this article, we will talk about armor-piercing ammunition. The article, which will be of interest to both dummies and those who understand the topic, was prepared by a member of our team, Eldar Akhundov, who pleases us once again interesting reviews on the subject of armaments.

Story

Armor-piercing shells are designed to hit targets protected by armor, as their name implies. They first began to be widely used in naval battles in the second half of the 19th century with the advent of ships protected by metal armor. The effect of simple high-explosive fragmentation projectiles on armored targets was not enough due to the fact that during the explosion of the projectile, the energy of the explosion is not concentrated in any one direction, but is dissipated into the surrounding space. Only part of the shock wave affects the object's armor, trying to break through / bend it. As a result, the pressure created by the shock wave is not enough to penetrate thick armor, but some deflection is possible. With the thickening of the armor and the strengthening of the design of armored vehicles, it was necessary to increase the amount of explosives in the projectile by increasing its size (caliber, etc.) or developing new substances, which would be costly and inconvenient. By the way, this applies not only to ships, but also to land armored vehicles.

Initially, the first tanks during the First World War could be fought with high-explosive fragmentation shells, since the tanks had bulletproof thin armor only 10-20 mm thick, which was also connected with rivets, since at that time (early 20th century) welding technology solid armored hulls of tanks and armored vehicles has not yet been worked out. It was enough 3 - 4 kg of explosives with a direct hit to put such a tank out of action. In this case, the shock wave simply tore or pressed the thin armor inside the vehicle, which led to damage to equipment or the death of the crew.

An armor-piercing projectile is a kinetic means of hitting a target - that is, it ensures defeat due to the energy of the impact of the projectile, and not the explosion. In armor-piercing projectiles, energy is actually concentrated at its tip, where a sufficiently large pressure is created on a small area of ​​​​the surface, and the load significantly exceeds the tensile strength of the armor material. As a result, this leads to the introduction of the projectile into the armor and its penetration. Kinetic munitions were the first mass-produced anti-tank weapon that was commercially used in various wars. The impact energy of the projectile depends on the mass and its speed at the moment of contact with the target. The mechanical strength, the density of the material of an armor-piercing projectile are also critical factors on which its effectiveness depends. For many years of wars, various types of armor-piercing shells have been developed, differing in design, and for more than a hundred years there has been a constant improvement of both shells and the armor of tanks and armored vehicles.

The first armor-piercing projectiles were an all-steel solid projectile (blank) that pierced armor with an impact force (approximately equal to the caliber of the projectile in thickness)

Then the design began to get more complicated and for a long time the following scheme became popular: a rod / core made of hard hardened alloy steel covered in a shell of soft metal (lead or mild steel), or light alloy. The soft shell was needed to reduce wear on the gun barrel, and also because it was not practical to make the entire projectile from hardened alloy steel. The soft shell was crushed when hitting an inclined barrier, thereby preventing the projectile from ricocheting / slipping on the armor. The shell can also serve as a fairing at the same time (depending on the shape) that reduces air resistance during the flight of the projectile.

Another design of the projectile involves the absence of a shell and only the presence of a special soft metal cap as a projectile tip for aerodynamics and to prevent ricochet when hitting sloped armor.

The device of sub-caliber armor-piercing shells

The projectile is called sub-caliber because the caliber (diameter) of its combat / armor-piercing part is 3 less than the caliber of the gun (a - coil, b - streamlined). 1 - ballistic tip, 2 - pallet, 3 - armor-piercing core / armor-piercing part, 4 - tracer, 5 - plastic tip.

The projectile has rings around it made of soft metal, which are called leading belts. They serve to center the projectile in the barrel and obturate the barrel. Obturation is the sealing of the barrel bore when a gun (or a weapon in general) is fired, which prevents the powder gases (accelerating the projectile) from breaking through into the gap between the projectile itself and the barrel. Thus, the energy of the powder gases is not lost and is transferred to the projectile to the maximum possible extent.

Left- the dependence of the thickness of the armored barrier on its angle of inclination. A plate of thickness B1 inclined at some angle, a has the same resistance as a thicker plate of thickness B2 at right angles to the movement of the projectile. It can be seen that the path that the projectile must pierce increases with the increase in the slope of the armor.

On right- blunt projectiles A and B at the time of contact with sloping armor. Below - a sharp-headed arrow-shaped projectile. Due to the special shape of projectile B, its good engagement (biting) on ​​sloping armor is visible, which prevents ricochet. A sharp-headed projectile is less prone to ricochet due to its acute form and very high contact pressure when hitting the armor.

The damaging factors when such projectiles hit the target are fragments and fragments of armor flying at high speed from its inner side, as well as the flying projectile itself or its parts. Particularly affected equipment located on the trajectory of breaking through the armor. In addition, due to the high temperature of the projectile and its fragments, as well as the presence of a large amount of flammable objects and materials inside the tank or armored vehicle, the risk of fire is very high. The image below shows how this happens:

A relatively soft projectile body is visible, crushed during impact and a hard-alloy core that penetrates armor. On the right is a stream of high-velocity fragments with inside armor as one of the main damaging factors. In all modern tanks there is a tendency for the most dense placement of internal equipment and crew to reduce the size and weight of tanks. The flip side of this coin is that if the armor is penetrated, it is almost guaranteed that some important equipment will be damaged or a crew member will be injured. And even if the tank is not destroyed, it usually becomes incapacitated. On modern tanks and armored vehicles, a non-combustible anti-fragmentation lining is installed on the inside of the armor. As a rule, this is a material based on Kevlar or other high-strength materials. Although it does not protect against the core of the projectile itself, it retains some of the armor fragments, thereby reducing the damage done and increasing the survivability of the vehicle and crew.

Above, on the example of an armored vehicle, one can see the armored effect of the projectile and fragments with and without the lining installed. On the left, fragments and the shell itself that pierced the armor are visible. On the right, the installed lining holds most of the armor fragments (but not the projectile itself), thereby reducing damage.

An even more effective type of shells are chamber shells. Chamber armor-piercing projectiles are distinguished by the presence of a chamber (cavity) inside the projectile filled with explosives and a delayed detonator. After penetrating the armor, the projectile explodes inside the object, thereby significantly increasing the damage dealt by fragments and a shock wave in a closed volume. In fact, this is an armor-piercing landmine.

One of the simple examples of a chamber projectile scheme

1 - soft ballistic shell, 2 - armor-piercing steel, 3 - explosive charge, 4 - bottom detonator, working with slowdown, 5 - front and rear leading belts (shoulders).

Chamber shells are not used today as anti-tank shells, since their design is weakened by an internal cavity with explosives and is not designed to penetrate thick armor, that is, a shell tank caliber(105 - 125 mm) will simply collapse in a collision with modern frontal tank armor (equivalent to 400 - 600 mm of armor and above). Such shells were widely used during the Second World War, since their caliber was comparable to the thickness of the armor of some tanks of that time. In naval battles of the past, chamber shells were used from a large caliber of 203 mm to a monstrous 460 mm (the battleship of the Yamato series), which could well penetrate thick ship steel armor comparable in thickness to their caliber (300 - 500 mm), or a layer of reinforced concrete and stone several meters.

Modern armor-piercing ammunition

Despite the fact that after the Second World War were developed Various types anti-tank missiles, armor-piercing ammunition remains one of the main anti-tank weapons. Despite the indisputable advantages of missiles (mobility, accuracy, homing capabilities, etc.), armor-piercing shells also have their advantages.

Their main advantage lies in the simplicity of design and, accordingly, production, which affects the lower price of the product.

In addition, an armor-piercing projectile, unlike an anti-tank missile, has a very high speed of approach to the target (from 1600 m / s and higher), it is impossible to “get away” from it by maneuvering in time or hiding in a shelter (in a certain sense, when launching a rocket, such there is a possibility). In addition, an anti-tank projectile does not require the need to keep the target on sight, like many, though not all, ATGMs.

It is also impossible to create radio-electronic interference against an armor-piercing projectile due to the fact that it simply does not contain any electronic devices. In the case of anti-tank missiles, this is possible; such complexes as Shtora, Afghanit or Zaslon * are created specifically for this.

A modern armor-piercing projectile widely used in most countries of the world is actually a long rod made of a high-strength metal (tungsten or depleted uranium) or composite (tungsten carbide) alloy and rushing to the target at a speed of 1500 to 1800 m / s and higher. The rod at the end has stabilizers called plumage. The projectile is abbreviated as BOPS (Armor Piercing Feathered Sub-caliber Projectile). You can also just call it BPS (Armor Piercing Sub-caliber Projectile).

Almost all modern armor-piercing ammunition shells have the so-called. "Plumage" - tail flight stabilizers. The reason for the appearance of feathered shells lies in the fact that the shells of the old scheme described above after the Second World War exhausted their potential. It was necessary to lengthen the shells for greater efficiency, but they lost stability at a large length. One of the reasons for the loss of stability was their rotation in flight (since most of the guns were rifling and imparted rotational motion to the projectiles). The strength of the materials of that time did not allow the creation of long projectiles with sufficient strength to penetrate thick composite (puff) armor. The projectile was easier to stabilize not by rotation, but by plumage. An important role in the appearance of plumage was also played by the appearance of smooth-bore guns, the shells of which could be accelerated to more high speeds than when using rifled guns, and the problem of stabilization in which began to be solved with the help of plumage (we will touch on the topic of rifled and smooth-bore guns in the next article).

Materials play a particularly important role in armor-piercing shells. Tungsten carbide** (composite material) has a density of 15.77 g/cm3, which is almost twice that of steel. It has great hardness, wear resistance and melting point (about 2900 C). Recently, heavier alloys based on tungsten and uranium have become especially widespread. Tungsten or depleted uranium has a very high density, which is almost 2.5 times higher than that of steel (19.25 and 19.1 g/cm3 versus 7.8 g/cm3 for steel) and, accordingly, greater mass and kinetic energy while maintaining minimal dimensions. Also, their mechanical strength (especially in bending) is higher than that of composite tungsten carbide. Thanks to these qualities, it is possible to concentrate more energy in a smaller volume of the projectile, that is, to increase the density of its kinetic energy. Also, these alloys have tremendous strength and hardness compared to even the strongest existing armor or specialty steels.

The projectile is called sub-caliber because the caliber (diameter) of its combat / armor-piercing part is less than the caliber of the gun. Typically, the diameter of such a core is 20 - 36 mm. Recently, projectile developers have been trying to reduce the diameter of the core and increase its length, if possible, maintain or increase mass, reduce drag during flight and, as a result, increase contact pressure at the point of impact with armor.

Uranium ammunition has 10 - 15% greater penetration with the same dimensions due to interesting feature alloy called self-sharpening. scientific term of this process is “ablative self-sharpening”. As a tungsten projectile passes through the armor, its tip is deformed and flattened due to the enormous drag. When flattened, its contact area increases, which further increases the resistance to movement and, as a result, penetration suffers. When a uranium projectile passes through the armor at speeds greater than 1600 m/s, its tip does not deform or flatten, but simply breaks down parallel to the movement of the projectile, that is, it peels off in parts and thus the rod always remains sharp.

In addition to the already listed damaging factors of armor-piercing projectiles, modern BPSs have a high incendiary ability when penetrating armor. This ability is called pyrophoricity - that is, self-ignition of projectile particles after breaking through armor ***.

125 mm BOPS BM-42 "Mango"

The design is a tungsten alloy core in a steel shell. Visible stabilizers at the end of the projectile (empennage). The white circle around the stem is the obturator. On the right, the BPS is equipped (drowned) inside the powder charge and in this form is delivered in tank forces. On the left is the second powder charge with a fuse and a metal pan. As you can see, the whole shot is divided into two parts, and only in this form it is placed in the automatic loader of tanks of the USSR / RF (T-64, 72, 80, 90). That is, first the loading mechanism sends the BPS with the first charge, and then the second charge.

The photo below shows parts of the obturator at the moment of separation from the rod in flight. A burning tracer is visible at the bottom of the rod.

Interesting Facts

*The Russian Shtora system was designed to protect tanks from anti-tank guided missiles. The system determines that a laser beam is aimed at the tank, determines the direction of the laser source, and sends a signal to the crew. The crew can maneuver or hide the car in a shelter. The system is also connected to a smoke rocket launcher that creates a cloud that reflects optical and laser radiation, thereby knocking the ATGM missile off the target. There is also an interaction of "Curtains" with searchlights - emitters that can interfere with the device of an anti-tank missile when they are directed at it. The effectiveness of the Shtora system against various latest-generation ATGMs is still in question. There are controversial opinions on this matter, but, as they say, its presence is better than its complete absence. On the last Russian tank"Armata" installed a different system - the so-called. the Afghanit complex active protection system, which, according to the developers, is capable of intercepting not only anti-tank missiles, but also armor-piercing shells flying at speeds up to 1700 m/s (in the future it is planned to increase this figure to 2000 m/s). In turn, the Ukrainian development "Barrier" operates on the principle of undermining ammunition on the side of an attacking projectile (rocket) and giving it a powerful impulse in the form of a shock wave and fragments. Thus, the projectile or missile deviates from the originally given trajectory, and is destroyed before meeting the target (or rather, its target). Judging by the technical characteristics, the most effective this system maybe against RPGs and ATGMs.

**Tungsten carbide is used not only for the manufacture of projectiles, but also for the manufacture of heavy-duty tools for working with extra hard steels and alloys. For example, an alloy called "Pobedit" (from the word "Victory") was developed in the USSR in 1929. It is a solid homogeneous mixture/alloy of tungsten carbide and cobalt in a ratio of 90:10. Products are obtained by powder metallurgy. Powder metallurgy is the process of obtaining metal powders and manufacturing various high-strength products from them with pre-calculated mechanical, physical, magnetic, and other properties. This process makes it possible to obtain products from mixtures of metals and non-metals that simply cannot be joined by other methods, such as fusion or welding. The mixture of powders is loaded into the mold of the future product. One of the powders is a binding matrix (something like cement), which will firmly connect all the smallest particles / grains of the powder to each other. Examples are nickel and cobalt powders. The mixture is pressed in special presses under pressure from 300 to 10,000 atmospheres. The mixture is then heated to a high temperature (70 to 90% of the melting point of the binder metal). As a result, the mixture becomes denser and the bond between the grains is strengthened.

*** Pyrophoricity is the ability of a solid material to self-ignite in air in the absence of heating and being in a finely divided state. The property can manifest itself upon impact or friction. One material that satisfies this requirement well is depleted uranium. When breaking through the armor, part of the core will just be in a finely divided state. Add to this also high temperature in the place of penetration of the armor, the impact itself and the friction of many particles and we get ideal conditions for ignition. Special additives are also added to tungsten alloys of shells to make them more pyrophoric. As the simplest example of pyrophoricity in everyday life, one can cite the silicon of lighters, which are made of an alloy of cerium metal.

) and 40 tons ("Puma", "Namer"). In this regard, overcoming the armor protection of these vehicles is a serious problem for anti-tank ammunition, which includes armor-piercing and cumulative projectiles, rockets and rocket-propelled grenades with kinetic and cumulative warheads, as well as striking elements with an impact core.

Among them, armor-piercing sub-caliber shells and missiles with a kinetic warhead are the most effective. Possessing high armor penetration, they differ from other anti-tank munitions in their high approach speed, low sensitivity to impact dynamic protection, the relative independence of the weapon guidance system from natural / artificial interference and low cost. Moreover, these types of anti-tank munitions can be guaranteed to overcome the system of active protection of armored vehicles, which is increasingly gaining popularity as an advanced line of interception of striking elements.

Currently, only armor-piercing sub-caliber shells have been adopted for service. They are fired mainly from smooth-bore guns of small (30-57 mm), medium (76-125 mm) and large (140-152 mm) calibers. The projectile consists of a two-bearing leading device, the diameter of which coincides with the diameter of the barrel bore, consisting of sections separated after departure from the barrel, and a striking element - an armor-piercing rod, in the bow of which a ballistic tip is installed, in the tail - an aerodynamic stabilizer and a tracer charge.

As the material of the armor-piercing rod, ceramics based on tungsten carbide (density 15.77 g / cc), as well as metal alloys based on uranium (density 19.04 g / cc) or tungsten (density 19.1 g / cc) are used. cc). The diameter of the armor-piercing rod ranges from 30 mm (obsolete models) to 20 mm (modern models). The higher the density of the rod material and the smaller the diameter, the greater the specific pressure exerted by the projectile on the armor at the point of its contact with the front end of the rod.

Metal rods have much greater bending strength than ceramic ones, which is very important when the projectile interacts with shrapnel elements of active protection or thrown dynamic protection plates. At the same time, the uranium alloy, despite its slightly lower density, has an advantage over tungsten - the armor penetration of the first is 15-20 percent greater due to the ablative self-sharpening of the rod in the process of penetrating armor, starting from an impact speed of 1600 m / s, provided by modern cannon shots.

The tungsten alloy begins to exhibit ablative self-sharpening starting at 2000 m/s, requiring new ways to accelerate projectiles. At a lower speed, the front end of the rod flattens out, increasing the penetration channel and reducing the penetration depth of the rod into the armor.

Along with the indicated advantage, the uranium alloy has one drawback - in the event of a nuclear conflict, neutron irradiation penetrating the tank induces secondary radiation in uranium that affects the crew. Therefore, in the arsenal of armor-piercing shells, it is necessary to have models with rods made of both uranium and tungsten alloys, designed for two types of military operations.

Uranium and tungsten alloys also have pyrophoricity - ignition of heated metal dust particles in air after breaking through the armor, which serves as an additional damaging factor. The specified property manifests itself in them, starting from the same speeds as the ablative self-sharpening. Another damaging factor is heavy metal dust, which has a negative biological effect on the crew of enemy tanks.

The leading device is made of aluminum alloy or carbon fiber, the ballistic tip and aerodynamic stabilizer are made of steel. The lead device serves to accelerate the projectile in the bore, after which it is discarded, so its weight must be minimized by using composite materials instead of aluminum alloy. The aerodynamic stabilizer is subjected to thermal effects from the powder gases generated during the combustion of the powder charge, which can affect the accuracy of shooting, and therefore it is made of heat-resistant steel.

The armor penetration of kinetic projectiles and missiles is determined as the thickness of a homogeneous steel plate, installed perpendicular to the axis of the projectile flight, or at a certain angle. In the latter case, the reduced penetration of the equivalent thickness of the plate is ahead of the penetration of the plate, installed along the normal, due to the large specific loads at the entrance and exit of the armor-piercing rod into / out of the inclined armor.

Upon entering the sloping armor, the projectile forms a characteristic roller above the penetration channel. The blades of the aerodynamic stabilizer, collapsing, leave a characteristic "star" on the armor, by the number of rays of which it is possible to determine the belonging of the projectile (Russian - five rays). In the process of breaking through the armor, the rod is intensively ground off and significantly reduces its length. When leaving the armor, it elastically bends and changes the direction of its movement.

A characteristic representative of the penultimate generation of armor-piercing artillery ammunition is the Russian 125-mm separate-loading round 3BM19, which includes a 4Zh63 sleeve with the main propellant charge and a 3BM44M sleeve containing an additional propellant charge and the 3BM42M Lekalo sub-caliber projectile itself. Designed for use in the 2A46M1 gun and newer modifications. The dimensions of the shot allow it to be placed only in modified versions of the automatic loader.

The ceramic core of the projectile is made of tungsten carbide, placed in a steel protective case. The leading device is made of carbon fiber. As the material of the sleeves (except for the steel pallet of the main propellant charge), cardboard impregnated with trinitrotoluene was used. The length of the cartridge case with the projectile is 740 mm, the length of the projectile is 730 mm, the length of the armor-piercing rod is 570 mm, and the diameter is 22 mm. The weight of the shot is 20.3 kg, the cartridge case with the projectile is 10.7 kg, the armor-piercing rod is 4.75 kg. The initial speed of the projectile is 1750 m / s, armor penetration at a distance of 2000 meters along the normal is 650 mm of homogeneous steel.

The latest generation of Russian armor-piercing artillery ammunition is represented by 125-mm separate-loading rounds 3VBM22 and 3VBM23, equipped with two types of sub-caliber projectiles - respectively 3VBM59 "Lead-1" with an armor-piercing rod made of tungsten alloy and 3VBM60 with an armor-piercing rod made of uranium alloy. The main propellant charge is loaded into the 4Zh96 "Ozon-T" cartridge case.

The dimensions of the new projectiles coincide with the dimensions of the Lekalo projectile. Their weight is increased to 5 kg due to the greater density of the rod material. To disperse heavy projectiles in the barrel, a more voluminous main propellant charge is used, which limits the use of shots, including Lead-1 and Lead-2 projectiles, only new cannon 2A82, which has an enlarged charging chamber. Armor penetration at a distance of 2000 meters along the normal can be estimated as 700 and 800 mm of homogeneous steel, respectively.

Unfortunately, the Lekalo, Lead-1 and Lead-2 projectiles have a significant design flaw in the form of centering screws located along the perimeter of the supporting surfaces of the leading devices (protrusions visible in the figure on the front supporting surface and points on the surface of the sleeve ). The centering screws serve to guide the projectile steadily in the bore, but their heads at the same time have a destructive effect on the surface of the bore.

In foreign designs of the latest generation, precision obturator rings are used instead of screws, which reduces barrel wear by a factor of five when fired with an armor-piercing sub-caliber projectile.

The previous generation of foreign armor-piercing sub-caliber projectiles is represented by the German DM63, which is part of a unitary shot for the standard 120 mm NATO smoothbore gun. Armor-piercing rod is made of tungsten alloy. The weight of the shot is 21.4 kg, the weight of the projectile is 8.35 kg, the weight of the armor-piercing rod is 5 kg. Shot length is 982 mm, projectile length is 745 mm, core length is 570 mm, diameter is 22 mm. When firing from a cannon with a barrel length of 55 calibers, the initial speed is 1730 m / s, the speed drop on the flight path is declared at the level of 55 m / s for every 1000 meters. Armor penetration at a distance of 2000 meters normal is estimated at 700 mm of homogeneous steel.

The latest generation of foreign armor-piercing sub-caliber projectiles includes the American M829A3, which is also part of the unitary shot for the standard 120-mm NATO smoothbore gun. Unlike the D63 projectile, the armor-piercing rod of the M829A3 projectile is made of a uranium alloy. The weight of the shot is 22.3 kg, the weight of the projectile is 10 kg, the weight of the armor-piercing rod is 6 kg. Shot length is 982 mm, projectile length is 924 mm, core length is 800 mm. When firing from a cannon with a barrel length of 55 calibers, the initial speed is 1640 m/s, the speed drop is declared at the level of 59.5 m/s for every 1000 meters. Armor penetration at a distance of 2000 meters is estimated at 850 mm homogeneous steel.

When comparing the latest generation of Russian and American sub-caliber projectiles equipped with armor-piercing uranium alloy cores, a difference in the level of armor penetration is visible, to a greater extent due to the degree of elongation of their striking elements - 26-fold for the lead of the Lead-2 projectile and 37-fold for the rod projectile М829А3. In the latter case, a quarter greater specific load is provided at the point of contact between the rod and armor. In general, the dependence of the armor penetration value of shells on the speed, weight and elongation of their striking elements is shown in the following diagram.

An obstacle to increasing the elongation of the striking element and, consequently, the armor penetration of Russian projectiles is the automatic loader device, first implemented in 1964 in the Soviet T-64 tank and repeated in all subsequent models. domestic tanks, which provides for the horizontal arrangement of projectiles in the conveyor, the diameter of which cannot exceed the internal width of the hull, equal to two meters. Taking into account the case diameter of Russian shells, their length is limited to 740 mm, which is 182 mm less than the length of American shells.

In order to achieve parity with cannon armament potential enemy for our tank building, the priority for the future is the transition to unitary shots, located vertically in the automatic loader, the shells of which have a length of at least 924 mm.

Other ways to increase the effectiveness of traditional armor-piercing projectiles without increasing the caliber of guns have practically exhausted themselves due to restrictions on the pressure in the barrel chamber, developed during the combustion of a powder charge, due to the strength of weapon steel. When switching to a larger caliber, the size of the shots becomes comparable to the width of the tank hull, forcing the shells to be placed in the aft niche of the turret with increased dimensions and a low degree of protection. For comparison, the photo shows a shot of 140 mm caliber and a length of 1485 mm next to a mock shot of a 120 mm caliber and a length of 982 mm.

In this regard, in the United States, as part of the MRM (Mid Range Munition) program, active rockets MRM-KE with a kinetic warhead and MRM-CE with a cumulative warhead have been developed. They are loaded into the cartridge case of a standard 120-mm cannon shot with a propellant charge of gunpowder. The caliber body of the projectiles contains a radar homing head (GOS), a striking element (an armor-piercing rod or a shaped charge), impulse trajectory correction engines, an accelerating rocket engine and a tail unit. The weight of one projectile is 18 kg, the weight of the armor-piercing rod is 3.7 kg. The initial speed at the level of the muzzle is 1100 m/s, after the completion of the accelerating engine, it increases to 1650 m/s.

Even more impressive performance has been achieved as part of the creation of the CKEM (Compact Kinetic Energy Missile) anti-tank kinetic missile, the length of which is 1500 mm, weight 45 kg. The rocket is launched from a transport and launch container using a powder charge, after which the rocket is accelerated by an accelerating solid-fuel engine to a speed of almost 2000 m / s (Mach 6.5) in 0.5 seconds.

The subsequent ballistic flight of the rocket is carried out under the control of the radar seeker and aerodynamic rudders with stabilization in the air using the tail unit. The minimum effective firing range is 400 meters. The kinetic energy of the damaging element - armor-piercing rod at the end of jet acceleration reaches 10 mJ.

During the tests of the MRM-KE projectiles and the CKEM missile, the main drawback of their design was revealed - unlike sub-caliber armor-piercing projectiles with a separating leading device, the flight by inertia of the striking elements of a caliber projectile and a kinetic missile is carried out assembled with a body of large cross-section and increased aerodynamic resistance, which causes a significant drop in speed on the trajectory and a decrease in the effective firing range. In addition, the radar seeker, impulse correction engines and aerodynamic rudders have a low weight perfection, which forces to reduce the weight of the armor-piercing rod, which negatively affects its penetration.

The way out of this situation is seen in the transition to the separation in flight of the caliber body of the projectile / rocket and the armor-piercing rod after the completion of the rocket engine, by analogy with the separation of the leading device and the armor-piercing rod, which are part of the sub-caliber projectiles, after their departure from the barrel. Separation can be carried out with the help of an expelling powder charge, which is triggered at the end of the accelerating section of the flight. Reduced-sized seeker should be located directly in the ballistic tip of the rod, while the flight vector control must be implemented on new principles.

A similar technical problem was solved as part of the BLAM (Barrel Launched Adaptive Munition) project to create small-caliber guided artillery shells, performed at the Adaptive Aerostructures Laboratory AAL (Adaptive Aerostructures Laboratory) of Auburn University by order of the US Air Force. The aim of the project was to create a compact homing system that combines a target detector, a controlled aerodynamic surface and its drive in one volume.

The developers decided to change the direction of flight by deflecting the projectile tip at a small angle. At supersonic speed, a fraction of a degree deflection is enough to create a force capable of implementing a control action. Technical solution a simple one was proposed - the ballistic tip of the projectile rests on a spherical surface, which plays the role of a ball bearing, several piezoceramic rods are used to drive the tip, arranged in a circle at an angle to the longitudinal axis. Changing their length depending on the applied voltage, the rods deflect the tip of the projectile to the desired angle and with the desired frequency.

The calculations determined the strength requirements for the control system:
- accelerating acceleration up to 20,000 g;
- acceleration on the trajectory up to 5,000 g;
- projectile speed up to 5000 m / s;
— tip deflection angle up to 0.12 degrees;
— drive actuation frequency up to 200 Hz;
- drive power 0.028 watts.

Recent advances in the miniaturization of infrared sensors, laser accelerometers, computing processors and lithium-ion power supplies resistant to high accelerations (such as electronic devices for guided missiles - American and Russian), make it possible in the period up to 2020 to create and adopt kinetic projectiles and missiles with an initial flight speed of more than two kilometers per second, which will significantly increase the effectiveness of anti-tank munitions, and also make it possible to abandon the use of uranium as part of their striking elements.



What else to read