Условная вероятность. Теорема Байеса. Вероятность события. Определение вероятности события

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?

Цели урока:

  • Уметь приводить примеры случайных событий.
  • Понимать, что вероятность – числовая мера правдоподобия события, что вероятность – число, заключенное в пределах от 0 до 1.
  • Познакомить учащихся 8-го класса с основными понятиями теории вероятности.
  • Научить решать простейшие задачи с помощью формул классической вероятности.

Теоретический материал

Определение: Теория вероятностей – это раздел математики, изучающий вероятно- статистические закономерности.

Например, с помощью данной теории можно посчитать вероятность того, что конкретного ученика в классе вызовут к доске на уроке. Рассмотрим основные понятия теории вероятности.

Определение: Случайные события – это события, которые при одних и тех же условиях могут произойти, а могут и не произойти.

Один из основателей математической статистики, шведский ученый Харальд Крамер писал: “По-видимому, невозможно дать точное определение того, что подразумевается под словом “случайный”. Смысл этого слова лучше всего разъяснить на примерах”. Например, случайным событием является солнечная погода.

В обычном понимании вероятностью называют количественную оценку возможности наступления ожидаемого события.

Определение: События, которые в данных условиях произойти не могут, называются невозможными.

Определение: События, которые в данных условиях произойти обязательно, называются достоверными.

Например, окончание урока.

Итак, достоверное событие – это событие, наступающее при данных условиях со стопроцентной вероятностью (т.е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т.д.). Невозможное событие – это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни гак четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычные люди используют слова “более вероятно” или “менее вероятно”, как говорится, по наитию, опираясь на то, что называется здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словам, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы с вами уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная, а вероятность наступления невозможного события – как нулевая. Учитывая, что 100% равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;
2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется – теория вероятностей .

КЛАССИЧЕСКАЯ ВЕРОЯТНОСТНАЯ СХЕМА

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;
2) принять предположение о равновероятности (равновозможности) всех этих исходов;
3) найти кол-во N(A) тех исходов опыта, в которых наступает событие А;
4) найти частное N(A)/N оно и будет равно вероятности события А.

Поясним данное определение на примере. Рассмотри случайный эксперимент по бросанию игральной кости. Известно, что на игральной кости имеется 6 равных пронумерованных граней. Исходом каждого бросания кости будет выпадение одного из чисел от 1 до 6. В этом эксперименте мы имеем число всевозможных исходов n , равное 6. Назначим ожидаемым исходом выпадение числа 5. Поскольку число 5 на игральной кости только одно, число благоприятных исходов m будет равно 1. Используя формулу классической вероятности, нетрудно вычислить, что вероятность выпадения числа 5 равна 1/6.

Стоит отметить, что классическое определение вероятности применяется только к случайному событию с равновероятным исходом. Например, если бы у игральной кости были неравные грани, вероятность выпадения одних чисел была бы выше вероятности выпадения других. Определение классической вероятности в этом случае было бы неприменимо.

Вероятность – это положительное число от нуля до единицы.

Вероятность невозможного события равна 0, так как количество благоприятных исходов m равна 0.

Вероятность достоверного события равна 1, так как количество благоприятных исходов m совпадает с количеством возможных исходов n .

Практическая часть

Решить задачи:

  1. Бросают два кубика: красный и синий. Считая все комбинации цифр на красном и синем кубиках равновозможными, определить вероятность того, что цифры на красном и синем кубиках будут одинаковы. Подсчитаем общее кол-во исходов (комбинация цифр). На красном кубике может быть любая цифра от одного до шести. Для каждого из этих вариантов есть шесть вариантов цифры на синем кубике. Скажем, если на красном кубике выпала тройка, то возможны варианты (3,1) (3,2) (3,3) (3,4) (3,5) (3,6). (Мы записываем сначала цифру на красном кубике, а потом на синем.) Всего, таким образом, будет 6 ґ 6 = 36 комбинация (исходов). Их можно вообразить в виде таблицы (см. форзац учебника). По условию благоприятны из них те, где на обоих кубиках выпала одна и та же цифра. Их шесть и стоят они на диагонали таблицы: (1,1) (2,2) (3,3) (4,4) (5,5) (6,6). Таким образом, доля благоприятных исходов (искомая вероятность) составляет 6 из 36, то есть 1/6.
  2. Какова вероятность выпадения натурального числа при бросании игральной кости?
  3. Какова вероятность выпадения числа 9 при бросании игральной кости?
  4. Какова вероятность выпадения орла при подбрасывании монеты?
  5. В лотерее 55 билетов, 7 из которых выигрышные. Какова вероятность выигрыша при покупке одного билета? Какова вероятность проигрыша при покупке одного билета?

Домашнее задание

  1. Определить вероятность выпадения нечетного числа при бросании игральной кости.
  2. Привести примеры невозможных событий из школьной жизни.
  3. На экзамене – 24 билета. Вася не выучил 5 из них. Какова вероятность того, что Вася вытащит счастливый билет?
  4. Буквы в слове МИША смешали и затем выложили в случайном порядке (все перестановки равновероятны). Какова вероятность, что получится то же самое слово? Тот же вопрос для слов МАІІІА и МАМА.

Поговорим о задачах, в которых встречается фраза "хотя бы один". Наверняка вы встречали такие задачи в домашних и контрольных работах, а теперь узнаете, как их решать. Сначала я расскажу об общем правиле, а потом рассмотрим частный случай и , выпишем формулы и примеры для каждого.

Общая методика и примеры

Общая методика для решения задач, в которых встречается фраза "хотя бы один" такая:

  • Выписать исходное событие $A$ = (Вероятность того, что... хотя бы...).
  • Сформулировать противоположное событие $\bar{A}$.
  • Найти вероятность события $P(\bar{A})$.
  • Найти искомую вероятность по формуле $P(A)=1-P(\bar{A})$.

    А теперь разберем ее на примерах. Вперед!

    Пример 1. В ящике находится 25 стандартных и 6 бракованных однотипных деталей. Какова вероятность того, что среди трёх наудачу выбранных деталей окажется хотя бы одна бракованная?

    Действуем прямо по пунктам.
    1. Записываем событие, вероятность которого надо найти прямо из условия задачи:
    $A$ =(Из 3 выбранных деталей хотя бы одна бракованная).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 3 выбранных деталей ни одной бракованной) = (Все 3 выбранные детали будут стандартные).

    3. Теперь нужно понять, как найти вероятность события $\bar{A}$, для чего еще раз посмотрим на задачу: говорится об объектах двух видов (детали бракованные и нет), из которых вынимается некоторое число объектов и изучаются (бракованные или нет). Это задача решается с помощью классического определения вероятности (точнее, по формуле гипергеометрической вероятности, подробнее о ней читайте в статье).

    Для первого примера запишем решение подробно, далее будем уже сокращать (а полные инструкции и калькуляторы вы найдете по ссылке выше).

    Сначала найдем общее число исходов - это число способов выбрать любые 3 детали из партии в 25+6=31 деталей в ящике. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 31 объектов по 3: $n=C_{31}^3$.

    Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы все 3 выбранные детали были стандартные, их можно выбрать $m = C_{25}^3$ способами (так как стандартных деталей в ящике ровно 25).

    Вероятность равна:

    $$ P(\bar{A})=\frac{m}{n}=\frac{C_{25}^3 }{C_{31}^3} = \frac{23 \cdot 24\cdot 25}{29\cdot 30\cdot 31} =\frac{2300}{4495}= 0.512. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.512 = 0.488. $$

    Ответ: 0.488.


    Пример 2. Из колоды в 36 карт берут наудачу 6 карт. Найти вероятность того, что среди взятых карт будут: хотя бы две пики.

    1. Записываем событие $A$ =(Из 6 выбранных карт будут хотя бы две пики).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 6 выбранных карт будет менее 2 пик) = (Из 6 выбранных карт будет ровно 0 или 1 пиковые карты, остальные другой масти).

    Замечание. Тут я остановлюсь и сделаю небольшое замечание. Хотя в 90% случаях методика "перейти к противоположному событию" работает на отлично, существуют случаи, когда проще найти вероятность исходного события. В данном случае, если искать напрямую вероятность события $A$ потребуется сложить 5 вероятностей, а для события $\bar{A}$ - всего 2 вероятности. А вот если бы задача была такая "из 6 карт хотя бы 5 - пиковые", ситуация стала бы обратной и тут проще решать исходную задачу. Если опять попытаться дать инструкцию, скажу так. В задачах, где видите "хотя бы один", смело переходите к противоположному событию. Если же речь о "хотя бы 2, хотя бы 4 и т.п.", тут надо прикинуть, что легче считать.

    3. Возвращаемся к нашей задаче и находим вероятность события $\bar{A}$ с помощью классического определения вероятности.

    Общее число исходов (способов выбрать любые 6 карт из 36) равно $n=C_{36}^6$ (калькулятор ).

    Найдем число благоприятствующих событию исходов. $m_0 = C_{27}^6$ - число способов выбрать все 6 карт непиковой масти (их в колоде 36-9=27), $m_1 = C_{9}^1\cdot C_{27}^5$ - число способов выбрать 1 карту пиковой масти (из 9) и еще 5 других мастей (из 27).

    $$ P(\bar{A})=\frac{m_0+m_1}{n}=\frac{C_{27}^6+C_{9}^1\cdot C_{27}^5 }{C_{36}^6} =\frac{85215}{162316}= 0.525. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.525 = 0.475. $$

    Ответ: 0.475.


    Пример 3. В урне 2 белых, 3 черных и 5 красных шаров. Три шара вынимают наугад. Найти вероятность того, что среди вынутых шаров хотя бы два будут разного цвета.

    1. Записываем событие $A$ =(Среди вынутых 3 шаров хотя бы два разного цвета). То есть, например, "2 красных шара и 1 белый", или "1 белый, 1 черный, 1 красный", или "2 черных, 1 красный" и так далее, вариантов многовато. Попробуем правило перехода к противоположному событию.

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Все три шара одного цвета) = (Выбраны 3 черных шара или 3 красных шара) - всего 2 варианта получилось, значит, этот способ решения упрощает вычисления. Кстати, все шары белого цвета не могут быть выбраны, так как их всего 2, а вынимается 3 шара.

    3. Общее число исходов (способов выбрать любые 3 шара из 2+3+5=10 шаров) равно $n=C_{10}^3=120$.

    Найдем число благоприятствующих событию исходов. $m = C_{3}^3+C_{5}^3=1+10=11$ - число способов выбрать или 3 черных шара (из 3), или 3 красных шара (из 5).

    $$ P(\bar{A})=\frac{m}{n}=\frac{11}{120}. $$

    4. Искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- \frac{11}{120}=\frac{109}{120} = 0.908. $$

    Ответ: 0.908.

    Частный случай. Независимые события

    Идем дальше, и приходим к классу задач, где рассматривается несколько независимых событий (стрелки попадают, лампочки перегорают, машины заводятся, рабочие болеют с разной вероятностью каждый и т.п.) и нужно "найти вероятность наступления хотя бы одного события" . В вариациях это может звучать так "найти вероятность, что хотя бы один стрелок из трех попадет в цель", "найти вероятность того, что хотя бы один автобус из двух вовремя приедет на вокзал", "найти вероятность, что хотя бы один элемент в устройстве из четырех элементов откажет за год" и т.д.

    Если в примерах выше речь шла о применении формулы классической вероятности , здесь мы приходим к алгебре событий, используем формулы сложения и умножения вероятностей (небольшая теория ).

    Итак, рассматриваются несколько независимых событий $A_1, A_2,...,A_n$, вероятности наступления каждого известны и равны $P(A_i)=p_i$ ($q_i=1-p_i$). Тогда вероятность того, что в результате эксперимента произойдет хотя бы одно из событий, вычисляется по формуле

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n. \quad(1) $$

    Строго говоря, эта формула тоже получается применением основной методики "перейти к противоположному событию" . Ведь действительно, пусть $A$=(Наступит хотя бы одно событие из $A_1, A_2,...,A_n$), тогда $\bar{A}$ = (Ни одно из событий не произойдет), что значит:

    $$ P(\bar{A})=P(\bar{A_1} \cdot \bar{A_2} \cdot ... \bar{A_n})=P(\bar{A_1}) \cdot P(\bar{A_2}) \cdot ... P(\bar{A_n})=\\ =(1-P(A_1)) \cdot (1-P(A_2)) \cdot ... (1-P(A_n))=\\ =(1-p_1) \cdot (1-p_2) \cdot ... (1-p_n)=q_1\cdot q_2 \cdot ...\cdot q_n,\\ $$ откуда и получаем нашу формулу $$ P(A)=1-P(\bar{A})=1-q_1\cdot q_2 \cdot ...\cdot q_n. $$

    Пример 4. Узел содержит две независимо работающие детали. Вероятности отказа деталей соответственно равны 0,05 и 0,08. Найти вероятность отказа узла, если для этого достаточно, чтобы отказала хотя бы одна деталь.

    Событие $A$ =(Узел отказал) = (Хотя бы одна из двух деталей отказала). Введем независимые события: $A_1$ = (Первая деталь отказала) и $A_2$ = (Вторая деталь отказала). По условию $p_1=P(A_1)=0,05$, $p_2=P(A_2)=0,08$, тогда $q_1=1-p_1=0,95$, $q_2=1-p_2=0,92$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2 = 1-0,95\cdot 0,92=0,126. $$

    Ответ: 0,126.

    Пример 5. Студент разыскивает нужную ему формулу в трех справочниках. Вероятность того, что формула содержится в первом справочнике, равна 0,8, во втором - 0,7, в третьем - 0,6. Найти вероятность того, что формула содержится хотя бы в одном справочнике.

    Действуем аналогично. Рассмотрим основное событие
    $A$ =(Формула содержится хотя бы в одном справочнике). Введем независимые события:
    $A_1$ = (Формула есть в первом справочнике),
    $A_2$ = (Формула есть во втором справочнике),
    $A_3$ = (Формула есть в третьем справочнике).

    По условию $p_1=P(A_1)=0,8$, $p_2=P(A_2)=0,7$, $p_3=P(A_3)=0,6$, тогда $q_1=1-p_1=0,2$, $q_2=1-p_2=0,3$, $q_3=1-p_3=0,4$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 = 1-0,2\cdot 0,3\cdot 0,4=0,976. $$

    Ответ: 0,976.

    Пример 6. Рабочий обслуживает 4 станка, работающих независимо друг от друга. Вероятность того, что в течение смены первый станок потребует внимания рабочего, равна 0,3, второй – 0,6, третий – 0,4 и четвёртый – 0,25. Найти вероятность того, что в течение смены хотя бы один станок не потребует внимания мастера.

    Думаю, вы уже уловили принцип решения, вопрос только в количестве событий, но и оно не оказывает влияния на сложность решения (в отличие от общих задач на сложение и умножение вероятностей). Только будьте внимательны, вероятности указаны для "потребует внимания", а вот вопрос задачи "хотя бы один станок НЕ потребует внимания". Вводить события нужно такие же, как и основное (в данном случае, с НЕ), чтобы пользоваться общей формулой (1).

    Получаем:
    $A$ = (В течение смены хотя бы один станок НЕ потребует внимания мастера),
    $A_i$ = ($i$-ый станок НЕ потребует внимания мастера), $i=1,2,3,4$,
    $p_1 = 0,7$, $p_2 = 0,4$, $p_3 = 0,6$, $p_4 = 0,75$.

    Искомая вероятность:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 \cdot q_4= 1-(1-0,7)\cdot (1-0,4)\cdot (1-0,6)\cdot (1-0,75)=0,982. $$

    Ответ: 0,982. Почти наверняка мастер будет отдыхать всю смену;)

    Частный случай. Повторные испытания

    Итак, у нас есть $n$ независимых событий (или повторений некоторого опыта), причем вероятности наступления этих событий (или наступления события в каждом из опытов) теперь одинаковы и равны $p$. Тогда формула (1) упрощается к виду:

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n = 1-q^n. $$

    Фактически мы сужаемся к классу задач, который носит название "повторные независимые испытания" или "схема Бернулли", когда проводится $n$ опытов, вероятность наступления события в каждом из которых равна $p$. Нужно найти вероятность, что событие появится хотя бы раз из $n$ повторений:

    $$ P=1-q^n. \quad(2) $$

    Подробнее о схеме Бернулли можно прочитать в онлайн-учебнике , а также посмотреть статьи-калькуляторы о решении различных подтипов задач (о выстрелах, лотерейных билетах и т.п.). Ниже же будут разобраны задачи только с "хотя бы один".

    Пример 7. Пусть вероятность того, что телевизор не потребует ремонта в течение гарантийного срока, равна 0,9. Найти вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта.

    Решения короче вы еще не видели.
    Просто выписываем из условия: $n=3$, $p=0,9$, $q=1-p=0,1$.
    Тогда вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта, по формуле (2):

    $$ P=1-0,1^3=1-0,001=0,999 $$

    Ответ: 0,999.

    Пример 8. Производится 5 независимых выстрелов по некоторой цели. Вероятность попадания при одном выстреле равна 0,8. Найти вероятность того, что будет хотя бы одно попадание.

    Опять, начинаем с формализации задачи, выписывая известные величины. $n=5$ выстрелов, $p=0,8$ - вероятность попадания при одном выстреле, $q=1-p=0,2$.
    И тогда вероятность того, что будет хотя бы одно попадание из пяти выстрелов равна: $$ P=1-0,2^5=1-0,00032=0,99968 $$

    Ответ: 0,99968.

    Думаю, с применением формулы (2) все более чем ясно (не забудьте почитать и о других задачах, решаемых в рамках схемы Бернулли, ссылки были выше). А ниже я приведу чуть более сложную задачу. Такие задачи встречаются пореже, но и их способ решения надо усвоить. Поехали!

    Пример 9. Производится n независимых опытов, в каждом из которых некоторое событие A появляется с вероятностью 0,7. Сколько нужно сделать опытов для того, чтобы с вероятностью 0,95 гарантировать хотя бы одно появление события A?

    Имеем схему Бернулли, $n$ - количество опытов, $p=0,7$ - вероятность появления события А.

    Тогда вероятность того, что произойдет хотя бы одно событие А в $n$ опытах, равна по формуле (2): $$ P=1-q^n=1-(1-0,7)^n=1-0,3^n $$ По условию эта вероятность должна быть не меньше 0,95, поэтому:

    $$ 1-0,3^n \ge 0,95,\\ 0,3^n \le 0,05,\\ n \ge \log_{0,3} 0,05 = 2,49. $$

    Округляя, получаем что нужно провести не менее 3 опытов.

    Ответ: минимально нужно сделать 3 опыта.



  • Что еще почитать