Собственная проводимость полупроводников. Примесная проводимость полупроводников. Собственная проводимость Что такое собственная проводимость

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ

Цель. Познакомить курсантов с процессом получения носителей зарядов в полупроводниках и методами управления их концентрацией и движением в электрических и магнитных полях .

План

1. Контактные и поверхностные явления в полупроводниках.

2. Внутренняя структура полупроводников.

3. Собственная и примесная проводимость полупроводников.

4. Температурная зависимость проводимости примесных полупроводников.

5. Формирование контакта полупроводник - полупроводник. Электронно- дырочный p-n- переход.

6. Свойства p-n- перехода при наличии приложенного внешнего напряжения.

7. Вольтамперная характеристика p-n- перехода, температурные и частотные свойства p-n- перехода.

8. Туннельный эффект. Переход Шоттки. Их свойства.

С точки зрения зонной теории, к полупроводникам относятся вещества, ширина запрещенной зоны которых не превосходит 3 эВ. Важнейшим свойством и признаком полупроводников является зависимость их от внешних условий: температуры, освещенности, давления, внешних полей и т.п. Характерная особенность полупроводников заключается в уменьшении их удельного сопротивления с увеличением температуры.

Наиболее широкое применение в полупроводниковой технике получили германий , кремний , селен , а также полупроводниковые соединения типа арсенид галлия, карбид кремния, сульфид кадмия и др.

Для полупроводников характерно кристаллические строение, т.е. закономерное и упорядоченное расположение их атомов в пространстве. В кристаллах связанные между собой атомы располагаются строго определенным образом и на одинаковых расстояниях друг от друга, в результате чего образуется своеобразная объемная решетка из атомов, которую принято называть кристаллической решеткой твердого тела .

Между атомами кристаллической решетки существуют связи. Они образуются валентными электронами, которые взаимодействуют не только с ядром своего атома, но и с соседними. В кристаллах германия, кремния связь между двумя соседними атомами осуществляется двумя валентными электронами - по одному от каждого атома. Такая связь между атомами называется двухэлектронной или ковалентной.

Характерной особенностью ковалентных связей заключается в том, что при их образовании электроны связи принадлежат уже не одному, а сразу обоим, связанным между собою атомам, т.е. являются для них общими.

В результате внешняя орбита каждого из атомов имеет как бы по восемь электронов, и становиться полностью заполненной. Кристаллическая решетка, в которой каждый электрон внешней орбиты связан ковалентными связями с остальными атомами вещества, является идеальной. В таком кристалле все валентные электроны прочно связаны между собой и свободных электронов, которые могли бы участвовать в переносе зарядов, нет . Такую кристаллическую решетку имеют все химически чистые беспримесные полупроводники при температуре абсолютного нуля (- 273?С). В этих условиях полупроводники обладают свойствами идеальных изоляторов.


Собственная проводимость полупроводников

Под действием внешних факторов некоторые валентные электроны атомов кристаллической решетки приобретают энергию, достаточную для освобождения от ковалентных связей. Так, при температурах выше абсолютного нуля атомы твердого тела колеблются около узлов кристаллической решетки. Чем выше температура, тем больше амплитуда колебаний. Время от времени энергия этих колебаний сообщается какому либо электрону, в результате чего его полная энергия оказывается достаточной для перехода из валентной зоны в зону проводимости.

При освобождении электрона из ковалентной связи в последней возникает как бы свободное место, обладающее элементарным положительным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой , а процесс образования пары электрон - дырка получил название генерации зарядов . Дырка обладает положительным зарядом, поэтому она может присоединить к себе электрон соседней заполненной ковалентной связи. В результате этого восстанавливается одна связь (этот процесс называют рекомбинацией ) и разрушается соседняя или, другими словами заполняется одна дырка и одновременно с этим возникает новая в другом месте. Такой генерационно-рекомбинационный процесс непрерывно повторяется, и дырка, переходя от одной связи к другой, будет перемещаться по кристаллу, что равносильно перемещению положительного заряда, равного по величине заряду электрона.

Различают несколько видов рекомбинации носителей в полупроводниках. В самом простом случае рекомбинация может рассматриваться как прямой переход электрона из зоны проводимости в валентную зону на имеющийся там свободный уровень (рис. 2.8, а). Разность энергии при этом выделяется в виде кванта электромагнитного излучения либо передается кристаллической решетке в виде механических колебаний.

Другой возможный путь рекомбинации связан с поэтапным переходом электрона через запрещенную зону: вначале электрон из зоны проводимости переходит на некоторый промежуточный уровень, расположенный внутри запрещенной зоны, а затем уже с этого уровня переходит в валентную зону (рис. 2.8, б). Промежуточный уровни, получившие название центров рекомбинации, или ловушек, могут появиться, если в кристаллической решетке имеются дефекты, обусловленные тепловым возбуждением атомов, наличием примесей, несовершенством поверхности полупроводника, воздействие на полупроводник частиц с большой энергией (β- лучей или α - частиц).

Наличие в полупроводнике центров рекомбинации позволяет резко уменьшить время жизни носителей зарядов, что необходимо для создания быстродействующих полупроводниковых приборов.

При отсутствии внешнего электрического поля электроны и дырки перемещаются в кристалле хаотически вследствие теплового движения. В этом случае ток в полупроводнике не возникает. Если же на кристалл действует электрическое поле, движение дырок и электронов становиться упорядоченным и в кристалле возникает электрический ток. Таким образом, проводимость полупроводника обусловлена перемещением, как свободных электронов, так и дырок.

В первом случае носители зарядов отрицательны (негативны ), во втором - положительны (позитивны ). Соответственно различают два вида проводимости полупроводников - электронную, или проводимость типа n (от слова negative - отрицательный), и дырочную , или проводимость типа p (от слова positive - положительный).

В химически чистом кристалле полупроводника число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса зарядов обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника . При этом ток в полупроводнике всегда равен сумме электронного и дырочного токов.

Определение 1

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ∆ E . У проводника она получила название валентной , а зона возбужденный состояний – зоной проводимости .

Если T = 0 К, то валентная зона заполняется целиком. В этом случае, зона проводимости свободна. Отсюда следует, что вблизи абсолютного нуля полупроводники не способны проводить ток. Отличие диэлектриков и полупроводников состоит в ширине запрещенной зоны ∆ E . Диэлектриками считают полупроводники при ∆ E > 2 э В.

Собственная и примесная проводимость полупроводников

Примечание 1

Если температура увеличивается, электроны начинают производить обмен энергии с ионами кристаллической решетки. Это может стать причиной обретения добавочной кинетической энергии ≈ k T . Ее количества достаточно для перевода некоторой части электронов в зону проводимости. Там они способны проводить ток.

Определение 2

В валентной зоне освобождаются квантовые состояния, которые электронами не заняты. Эти состояния называют дырками . Они являются носителями тока.

Электроны способны совершать квантовые переходы в незаполненные состояния. Заполненные состояния в этом случае освобождаются, то есть становятся дырками. В результате чего можно наблюдать появление равновесной концентрации дырок.

При отсутствии внешнего поля ее значение одинаковое по всему объему проводника. Квантовый переход сопровождается его перемещением против поля. Он способен уменьшить значение потенциальной энергии системы. Переход, который связан с перемещением в направлении поля, способен увеличить потенциальную энергию системы. При наличии преобладания количества переходов против поля над переходами по полю через полупроводник начнет протекать ток по движению приложенного электрического поля. Незамкнутый полупроводник характеризуется течением тока до тех пор, пока электрическое поле не будет компенсировать внешнее. Конечный результат такой же, как если бы в качестве носителей тока были не электроны, а положительно заряженные дырки. Отсюда следует, что различают два вида проводимости полупроводников: электронная и дырочная.

Носителя тока в металлах и полупроводниках считаются электроны, а дырки введены формально. Дырки в качестве положительно заряженных частиц не существует. Но перемещение в электрическом поле такое же, как и при классическом рассмотрении положительно заряженных частиц. Небольшая концентрация электронов в зоне проводимости и дырки в валентной зоне позволяют применять классическую статистику Больцмана.

Примечание 2

Дырочная и электронная проводимости не связаны с наличием примесей. Ее называют собственной электропроводностью полупроводников.

Если имеется идеально чистый проводник без примесей, то каждому освобожденному электрону при помощи теплового движения или света соответствовало бы образование одной дырки, иначе говоря, количество электронов и дырок, участвующих в создании тока, было бы одинаковое.

Существование идеально чистых полупроводников невозможно, поэтому при необходимости их создают искусственным путем. Даже наличие малого количества примесей способно повлиять на изменение свойств полупроводника.

Примесная проводимость полупроводников

Определение 3

Электропроводность полупроводников, вызванная наличием примесей атомов других химических элементов, называют примесной электрической проводимостью .

Небольшое их количество способно существенно влиять на увеличение проводимости. В металлах происходит обратное явление. Примеси способствуют уменьшению проводимости металлов.

Увеличение проводимости с примесями объясняется тем, что происходит появление дополнительных энергетических уровней в полупроводниках, находящихся в запрещенной зоне полупроводника.

Донорные и акцепторные примеси

Пусть дополнительные уровни в запрещенной зоне появляются около нижнего края зоны проводимости. Если интервал, отделяющий дополнительные уровни энергии от зоны проводимости, мал при сравнении с шириной запрещенной зоны, то произойдет увеличение числа электронов в зоне проводимости, значит, сама проводимость полупроводника возрастет.

Определение 4

Примеси, которые перемещают электроны в зону проводимости, называют донорами или донорными примесями. Дополнительные энергоуровни получили название донорных уровней .

Определение 5

Полупроводники с донорными примесями – это электронные или полупроводники n -типа.

Определение 6

Пусть с введением примеси возникают добавочные уровни около верхнего края валентной зоны. В этом случае электроны из этой зоны переходят на добавочные уровни. Валентная зона характеризуется появлением дырок, так как появляется дырочная электропроводность проводника. Примеси такого рода получили название акцепторных . Дополнительные уровни, располагаемые в них, называют акцепторными .

Определение 7

Полупроводники с акцепторными примесями получили название дырочных или полупроводников p -типа . Имеют место на существование смешанные полупроводники.

Вид проводимости, которым обладает полупроводник, определяют по знаку эффекта Холла.

Определение 8

Легирование – это процесс введение примесей. Если примесный уровень обладает высокой концентрацией, то происходит их расщепление. Перекрытие границ соответствующих энергетических зон считается результатом процесса.

Пример 1

Объяснить, к какому типу примеси относят атомы мышьяка, бора, находящихся в кристаллической решетке кремния.

Решение

Кремний является четырехвалентным атомом, значит, атом содержит 4 электрона. Мышьяк пятивалентен, то есть содержит 5 , причем пятый из которых отщепляется по причине наличия теплового движения. Положительный ион мышьяка вытесняет из решетки один из атомов кремния и встает на его место. Происходит возникновение электрона проводимости между узлами решетки. Отсюда следует, что мышьяк считается донорной примесью для кремния.

При рассмотрении бора в качестве примеси для кремния видно, что атом бора имеет наружную оболочку, состоящую из трех электронов. Атом бора захватывает четвертый электрон из соседнего места, находящегося в кристалле кремния. Именно там происходит появление дырки. Отрицательный ион бора, появившийся в ней, вытесняет атом кремния из кристаллической решетки и занимает его место. Говорят о возникновении в нем дырочной проводимости. Бор считается акцепторной примесью.

Ответ: мышьяк – донорная примесь, бор – акцепторная.

Пример 2

Даны термоэлементы с протеканием тока от металла к полупроводнику и наоборот. Объяснить, почему это происходит.

Решение

По условию, электронная и дырочная проводимость проходит в горячем спае. Это объясняется тем, что на конце электронного полупроводника с высокой температурой скорость электронов намного больше, чем в холодном. Отсюда следует, что электроны имеют возможность проходить от горячего конца к холодному до возникновения по причине перераспределения зарядов электрического поля и не останавливать поток диффундирующих электронов.

Только после установления равновесного состояния горячему концу, который потерял все электроны, соответствуют положительные заряды, а холодному – отрицательные. Можно сделать вывод, что имеется разность потенциалов между горячим и холодным концами с положительным знаком.

Дырочный полупроводник характеризуется обратным процессом. Диффузия идет от горячего конца к холодному, причем первый из них обладает отрицательным зарядом, а холодный – положительным. Получаем, что разности потенциалов имеют отрицательное значение, в отличие от электронного полупроводника.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Полупроводниками являются твердые те­ла, которые при T=0 характеризуются полностью занятой электронами валент­ной зоной, отделенной от зоны проводимо­сти сравнительно узкой (E порядка 1 эВ) запрещенной зоной (рис. 314, г). Своим названием они обязаны тому, что их элек­тропроводность меньше электропроводно­сти металлов и больше электропроводно­сти диэлектриков.

В природе полупроводники существу­ют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева), например Si, Ge, As, Se, Те, и химических соединений, например окси­ды, сульфиды, селениды, сплавы элемен­тов различных групп. Различают со­бственные и примесные полупроводники. Собственными полупроводниками являют­ся химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химиче­ски чистые Ge, Se, а также многие химиче­ские соединения: InSb, GaAs, CdS и др.

При О К и отсутствии других внешних факторов собственные полупроводники ве­дут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть пере­брошены на нижние уровни зоны проводи­мости II (рис.315). При наложении на кристалл электрического поля они переме­щаются против поля и создают электриче­ский ток. Таким образом, зона II из-за ее частичного «укомплектования» электрона­ми становится зоной проводимости. Про­водимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n -типа (от лат. negative - отрица­тельный) .

В результате тепловых забросов элек­тронов из зоны I в зону II в валентной зоне возникают вакантные состояния, по­лучившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место - дырку - может пере­меститься электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс за­полнения дырок электронами равносилен перемещению дырки в направлении, про­тивоположном движению электрона, так, как если бы дырка обладала положитель­ным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квази­частицами - дырками, называется ды­рочной проводимостью или проводимо­стью р-типа (от лат. positive - положи­тельный) .

Таким образом, в собственных полу­проводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости. Сле­довательно, если концентрации электронов проводимости и дырок обозначить соответ­ственно n е и n p , то

n e = n p . (242.1)

Проводимость полупроводников всегда яв­ляется возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных элек­трических полей и т.д.).

В собственном полупроводнике уро­вень Ферми находится в середине запре­щенной зоны (рис.316). Действительно, для переброса электрона с верхнего уров-

ня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны E. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следова­тельно, энергия, затраченная на образова­ние пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запре­щенной зоны, идет на переброс электрона и такая же энергия затрачивается на об­разование дырки, то начало отсчета для каждого из этих процессов должно на­ходиться в середине запрещенной зоны. Энергия Ферми в собственном полупро­воднике представляет собой энергию, от которой происходит возбуждение электро­нов и дырок.

Вывод о расположении уровня Ферми в се­редине запрещенной зоны собственного полупроводника может быть подтвержден мате­матическими выкладками. В физике твердого тела доказывается, что концентрация электро­нов в зоне проводимости

где Е 2 - энергия, соответствующая дну зоны проводимости (рис.316), E F - энергия Ферми, Т - термодинамическая температура, С 1 - по­стоянная, зависящая от температуры и эффек­тивной массы электрона проводимости. Эф­фективная масса - величина, имеющая раз­мерность массы и характеризующая динамиче­ские свойства квазичастиц - электронов про­водимости и дырок. Введение в зонную теорию эффективной массы электрона проводимости по­зволяет, с одной стороны, учитывать действие на электроны проводимости не только внешнего поля, но и внутреннего периодического поля кристалла, а с другой стороны, абстрагируясь от взаимодействия электронов проводимости с решеткой, рассматривать их движение во внеш­нем поле как движение свободных частиц. Концентрация дырок в валентной зоне

где С 2 - постоянная, зависящая от температу­ры и эффективной массы дырки, Е 1 - энергия, соответствующая верхней границе валентной зоны. Энергия возбуждения в данном случае отсчитывается вниз от уровня Ферми (рис. 316),

поэтому величины в экспоненциальном мно­жителе (242.3) имеют знак, обратный знаку экспоненциального множителя в (242.2). Так как для собственного полупроводника n е = n р (242.1), то

Если эффективные массы электронов и дырок равны (m* e =m* p), то С 1 =С 2 и, следовательно,

-(E 2 -E F)=E 1 -E F ,

E F =(E 1 +Е 2)/2 = E/2,

т. е. уровень Ферми в собственном полупро­воднике действительно расположен в середине запрещенной зоны.

Так как для собственных полупровод­ников E>>kT, то распределение Фер­ми - Дирака (235.2) переходит в распре­деление Максвелла - Больцмана. Поло­жив в (236.2) E- E F  E/2, получим

Количество электронов, переброшенных в зону проводимости, а следовательно, и количество образовавшихся дырок про­порциональны <N(E)>. Таким образом, удельная проводимость собственных полу­проводников

где  0 - постоянная, характерная для данного полупроводника.

Увеличение проводимости полупровод­ников с повышением температуры являет­ся их характерной особенностью (у метал­лов с повышением температуры проводи­мость уменьшается). С точки зрения зонной теории это обстоятельство объяс­нить довольно просто: с повышением тем­пературы растет число электронов, кото­рые вследствие теплового возбуждения переходят в зону проводимости и участву­ют в проводимости. Поэтому удельная проводимость собственных полупроводни­ков с повышением температуры растет.

Если представить зависимость ln от 1/Т, то для собственных полупровод­ников - это прямая (рис.317), по на-

клону которой можно определить ширину запрещенной зоны E, а по ее продол­жению -  0 (прямая отсекает на оси ординат отрезок, равный ln 0).

Одним из наиболее широко распро­страненных полупроводниковых элементов является германий, имеющий решетку ти­па алмаза, в которой каждый атом связан ковалентными связями (см. §71) с че­тырьмя ближайшими соседями. Упрощен­ная плоская схема расположения атомов в кристалле Ge дана на рис. 318, где каж­дая черточка обозначает связь, осуще­ствляемую одним электроном. В идеаль­ном кристалле при О К такая структура представляет собой диэлектрик, так как все валентные электроны участвуют в об­разовании связей и, следовательно, не участвуют в проводимости.

При повышении температуры (или под действием других внешних факторов) теп­ловые колебания решетки могут привести к разрыву некоторых валентных связей, в результате чего часть электронов отщеп­ляется и они становятся свободными. В покинутом электроном месте возникает дырка (она изображена белым кружком), заполнить которую могут электроны из соседней пары. В результате дырка, так

же как и освободившийся электрон, будет двигаться по кристаллу. Движение элек­тронов проводимости и дырок в отсутствие электрического поля является хаотиче­ским. Если же на кристалл наложить элек­трическое поле, то электроны начнут дви­гаться против поля, дырки - по полю, что приведет к возникновению собственной проводимости германия, обусловленной как электронами, так и дырками.

В полупроводниках наряду с процес­сом генерации электронов и дырок идет процесс рекомбинации: электроны перехо­дят из зоны проводимости в валентную зону, отдавая энергию решетке и испуская кванты электромагнитного излучения. В результате для каждой температуры устанавливается определенная равновес­ная концентрация электронов и дырок, изменяющаяся с температурой пропорцио­нально выражению (242.4).

«Физика - 10 класс»

Почему сопротивление проводников зависит от температуры?
Какие явления наблюдаются в состоянии сверхпроводимости?

Полупроводники - вещества, удельное сопротивление которых имеет промежуточное значение между удельным сопротивлением металлов (10 -6 -10 -8 Ом м) и удельным сопротивлением диэлектриков (10 8 -10 13 Ом м).

Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен, индий, мышьяк и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растёт, как у металлов (см. рис. 16.3), а, наоборот, чрезвычайно резко уменьшается (рис. 16.4).

Такое свойство присуще именно полупроводникам.

Из графика, изображённого на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведёт себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.


Строение полупроводников.


Для того чтобы включить транзисторный приёмник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придётся вникнуть в природу связей , удерживающих атомы полупроводникового кристалла друг возле друга.

Для примера рассмотрим кристалл кремния.

Кремний - четырёхвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырём. Схема структуры кристалла кремния изображена на рисунке (16.5).

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью . В образовании этой связи от каждого атома участвует по одному валентному электрону, электроны отделяются от атома, которому они принадлежат (коллективируются кристаллом), и при своём движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.

Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.

Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы цементирующим раствором, удерживающим кристаллическую решётку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.


Электронная проводимость.


При нагревании кремния кинетическая энергия частиц повышается и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторённые пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решётки, создавая электрический ток (рис. 16.6).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью .

При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/мл 3 . Это приводит к уменьшению сопротивления.


Дырочная проводимость.


При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном, которое называют дыркой .

В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).

Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Если напряжённость электрического поля в образце равна нулю, то перемещение дырок происходит беспорядочно и поэтому не создаёт электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок.

Направление движения дырок противоположно направлению движения электронов (рис. 16.7).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряжённости поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.

Итак, в полупроводниках имеются носители заряда двух типов электроны и дырки.

Проводимость, обусловленная движением дырок, называется дырочной проводимостью полупроводников.

Мы рассмотрели механизм проводимости чистых полупроводников.

Проводимость чистых полупроводников называют собственной проводимостью .


Примесная проводимость.


Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов: например, в германии при комнатной температуре n е = 3 10 13 см -3 . В то же время число атомов германия в 1 см 3 порядка 10 23 .

Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Проводимость полупроводников можно существенно увеличить, внедряя в них примесь. В этом случае наряду с собственной проводимостью возникает дополнительная - примесная проводимость .

Проводимость проводников, обусловленная внесением в их кристаллические решётки примесей (атомов посторонних химических элементов), называется примесной проводимостью .


Донорные примеси.


Добавим в кремний небольшое количество мышьяка. Атомы мышьяка имеют пять валентных электронов. Четыре из них участвуют в создании ковалентной связи данного атома с окружающими атомами кремния. Пятый валентный электрон оказывается слабо связанным с атомом. Он легко покидает атом мышьяка и становится свободным (рис. 16.8).

При добавлении одной десятимиллионной доли атомов мышьяка концентрация свободных электронов становится равной 10 16 см -3 . Это в тысячу раз больше концентрации свободных электронов в чистом полупроводнике.

Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными (отдающими) примесями .

Свободные электроны перемещаются по полупроводнику подобно тому, как перемещаются свободные электроны в металле.

Полупроводники, имеющие донорные примеси и потому обладающие большим числом электронов (по сравнению с числом дырок), называются полупроводниками n-типа (от английского слова negative - отрицательный).

В полупроводнике n-типа электроны являются основными носителями заряда, а дырки - неосновными .


Акцепторные примеси.


Если в качестве примеси использовать индий, атомы которого трёхвалентны, то характер проводимости полупроводника меняется. Для образования нормальных парноэлектронных связей с соседями атому индия недостаёт одного электрона, который он берёт у соседнего атома кристалла. В результате образуется дырка. Число дырок в кристалле равно числу атомов примеси (рис. 16.9).

Примеси в полупроводнике, создающие дополнительную концентрацию дырок, называют акцепторными (принимающими) примесями .

При наличии электрического поля дырки перемещаются направленно и возникает электрический ток, обусловленный дырочной проводимостью.

Полупроводники с преобладанием дырочной проводимости над электронной называют полупроводниками p-типа (от английского слова positive - положительный).

Основными носителями заряда в полупроводнике p-типа являются дырки, а неосновными - электроны.

Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией одного из носителей тока электронов или дырок. Эта особенность полупроводников открывает широкие возможности для их практического применения.

Сегодня мы расскажем, что такое собственная и примесная проводимость полупроводников, как она возникает и какую роль играет в современной жизни.

Атом и зонная теория

В начале двадцатого века ученые выяснили, что атом - это не самая маленькая частица вещества. Он имеет свою сложную структуру, а его элементы взаимодействуют по особенным законам.

К примеру, выяснилось, что электроны могут находиться только на определенных расстояниях до ядра - орбиталях. Переходы между этими состояниями происходят рывком с выделением или поглощением кванта электромагнитного поля. Чтобы объяснить механизм собственной и примесной проводимости полупроводников, надо сначала разобраться со строением атома.

Размеры и формы орбиталей определяются волновыми свойствами электрона. Как и волна, эта частица имеет период, и когда вращается вокруг ядра, он «накладывается» сам на себя. Только там, где волна не подавляет собственную энергию, электрон может существовать длительное время. Отсюда вытекает следствие: чем дальше от ядра находится уровень, тем меньше расстояние между этой и предыдущей орбиталью.

Решетка в твердом теле

Собственную и примесную проводимость полупроводников физика объясняет «коллективом» одинаковых орбиталей, который возникает в твердом теле. Под твердым телом подразумевается не агрегатное состояние, а совершенно конкретный термин. Так называется вещество с кристаллическим строением или аморфное тело, которое потенциально может быть кристаллическим. Например, лед и мрамор - это твердое тело, а дерево и глина - нет.

В кристалле существует очень много похожих атомов, и вокруг каждого вращаются одинаковые электроны на тех же орбиталях. И здесь есть небольшая проблема. Электрон относится к классу фермионов. Это значит, что двух частиц в совершенно одинаковых состояниях быть не может. И что делать в этом случае твердому телу?

Природа нашла потрясающий по простоте выход: все электроны, которые принадлежат одной орбитали одного атома в кристалле, чуть-чуть отличаются по энергии. Разница эта невероятно маленькая, и все орбитали как бы «спрессовываются» в одну непрерывную энергетическую зону. Между зонами лежат большие провалы - такие места, где электроны не могут находиться. Эти пробелы называются «запрещенными».

Чем полупроводник отличается от проводника и диэлектрика?

Среди всех зон одного твердого тела выделяются две. В одной (самой верхней) электроны могут свободно двигаться, они не «привязаны» к своим атомам и переходят с места на место. Это называется зоной проводимости. В металлах такая область напрямую соприкасается со всеми остальными, и чтобы возбудить электроны, не требуется затрачивать большую энергию.

Но у других веществ все иначе: электроны располагаются в валентной зоне. Там они связаны со своими атомами и не могут просто так покинуть их. Валентная зона отделяется от зоны проводимости «провалом». Чтобы электроны могли преодолеть запрещенную зону, веществу надо сообщить определенную энергию. Диэлектрики отличаются от полупроводников только размером «провала». У первых он больше, чем 3 эВ. Но в среднем у полупроводников ширина запрещенной зоны составляет от 1 до 2 эВ. Если разрыв больше, то вещество называется широкозонным полупроводником и используется с осторожностью.

Виды проводимости полупроводников

Чтобы понять, каковы особенности собственной и примесной проводимости полупроводников, надо сначала узнать, какие бывают ее виды.

Мы уже рассказали, что полупроводник - это кристалл. Значит, его решетка состоит из периодических одинаковых элементов. И его электроны надо «забросить» в зону проводимости, чтобы по веществу потек ток. Если по объему кристалла движутся именно электроны - это электронная проводимость. Она обозначается как n-проводимость (от первой буквы английского слова negative, то есть «отрицательный»). Но бывает и иной тип.

Представьте, что в некой периодической системе один элемент отсутствует. Например, лежат в корзине теннисные мячики. Они расположены ровными одинаковыми слоями: в каждом равное количество шаров. Если один мяч вынуть, в конструкции образуется пустота, дыра. Все окружающие шары постараются заполнить пробел: один элемент из верхнего слоя ляжет на место недостающего. И так далее, пока не установится равновесие. Но при этом и дыра будет тоже двигаться - в противоположном направлении, вверх. И если первоначально поверхность шаров в корзине была ровной, то после перемещений в верхнем ряду образуется дырка на месте одного недостающего мяча.

Так же и с электронами в полупроводниках: если электроны движутся к положительному полюсу напряжения, то оставшиеся на их месте пустоты движутся к отрицательному полюсу. Эти противоположные квазичастицы называются «дырки», и они имеют положительный заряд.

Если в полупроводнике преобладают дырки, то механизм называется p-проводимостью (от первой буквы английского слова positive, то есть «положительный»).

Примесь: случайность или стремление?

Когда человек слышит слово «примесь», то чаще всего подразумевается что-то нежелательное. Например, «примесь токсических веществ в воде», «примесь горечи в радости триумфа». Но примесь - это еще и что-то маленькое, незначительное.

В данное слово имеет скорее второй смысл, чем первый. Чтобы усилить один из типов проводимости, в кристалл можно ввести атом, который отдаст электроны (донор), либо заберет их (акцептор). Порой требуется незначительное количество чужеродного вещества, чтобы увеличить какой-то вид тока.

Таким образом, собственная и примесная проводимость полупроводников - это похожие явления. Добавка только усиливает уже существующее качество кристалла.

Применение легированных полупроводников

Вид проводимости для кристаллов важен, но на практике используют их комбинацию.

В месте соединения полупроводников n- и p-типа создается прослойка из положительных и отрицательных частиц. Если ток подключить правильно, то заряды скомпенсируют друг друга, и в цепи пойдет электричество. Если полюса подключить в обратном направлении, то разнозаряженные частицы «запрут» друг друга на своей половине, и в системе тока не будет.

Таким образом, маленький кусочек легированного кремния способен стать диодом для выпрямления электрического тока.

Как мы показали выше, ключевую роль играет в полупроводнике собственная и примесная проводимость. Полупроводниковые приборы стали намного меньше в размерах, чем ламповые устройства. Этот технологический прорыв позволил совершить многое из того, что ученые предсказали теоретически, но нельзя было до поры до времени осуществить на практике из-за больших размеров оборудования.

Кремний и космос

Полет в космос стал одной из важнейших возможностей, доступных благодаря полупроводникам. До шестидесятых годов двадцатого века это было неосуществимо по той простой причине, что управление ракеты содержалось в невероятно тяжелых и хрупких ламповых приборах. Ни один способ не мог поднять такую махину без вибраций и нагрузок. А открытие кремниевой и германиевой проводимости дало возможность уменьшить вес управляющих элементов и сделать их более цельными и прочными.



Что еще почитать