Металлы высокой активности. Какой самый активный металл

Если вы хотя бы немного помните школьный курс физики, то легко вспомните, что самый активный металл это литий. Этот факт не вызывает удивления, до тех пор, пока вы не пытаетесь разобраться подробнее в этом вопросе. Правда, сложно представить себе ситуацию, в которой это вам потребуется такая информацию, но ради праздного интереса можно попробовать.

К примеру, что такое активность металла? Способность к быстрой и полной реакции с другими химическими элементами? Возможно. Тогда литий, хоть и будет одним из наиболее активных металлов, но явно не чемпионом. Но об этом дальше.

А вот если внести незначительное уточнение, сказать не «самый активный металл», а «самый электрохимически активный металл», тогда литий займет законное первое место.

Литий

В переводе с греческого «литий» означает «камень». Но это и не удивительно, ведь обнаружил его шведский химик Арфведсон как раз в камне, в минерале петалите, где кроме всего прочего, содержался и этот металл.

С этого момента и началось его изучение. А работать есть над чем. К примеру, его плотность в несколько раз меньше, чем у алюминия. В воде он, конечно же, потонет, но зато в керосине будет уверенно плавать.

При нормальных условиях литий – это мягкий, серебристого цвета металл. В ряду Бекетова (ряд электрохимической активности) литий занимает почетное первое место, опередив даже все остальные щелочные металлы. Это означает, что при химической реакции он будет вытеснять другие металлы, занимая вакантное место в соединениях. Именно это и определяет все остальные его свойства.

К примеру, он абсолютно необходим для нормальной работы организма человека, хотя и в мизерных дозах. Повышенная концентрация может стать причиной отравления, пониженная – психической нестабильности.

Интересно, что известный напиток 7Up раньше содержал литий и позиционировался как средство от похмелья. Возможно, действительно помогал.

Цезий

Но если избавится от навязчивого уточнения «электрохимически», оставив просто «активный металл», то победителем можно назвать цезий.

Как известно, активность веществ в таблице Менделеева увеличивается справа налево и сверху вниз. Дело в том, что в веществах, которые находятся в первой группе (первый столбец) на внешнем слое вращается единственный одинокий электрон. Избавиться атому от него просто, что и происходит практически в любой реакции. Если бы их там было два, как у элементов из второй группы, то это бы потребовало уже больше времени, три - ещё больше, и так далее.

Но и в первой группе вещества не одинаково активны. Чем ниже находится вещество, тем больше диаметр его атома, и тем дальше от ядра вращается этот единственный свободный электрон. А это значит, что притяжение ядра на него воздействует слабее и оторваться ему легче. Всем этим условиям как раз и соответствует цезий.

Этот металл стал первым, который открыли с помощью спектроскопа. Ученые исследовали состав минеральной воды из целебного источника и увидели на спектроскопе ярко-голубую полосу, соответствующую неизвестному ранее элементу. Из-за этого цезий и получил свое название. Перевести его на русский можно как «небесно-голубой».

Из всех чистых металлов, которые можно добыть в значимых количествах, цезий обладает наибольшей химической активностью, а также множеством других интересных свойств. К примеру, он может расплавиться в руках человека. Но для этого он должен быть помещен в запаянную стеклянную капсулу, наполненную чистым аргоном, ведь в противном случае он просто загорится от контакта с воздухом. Этот металл нашел свое применение в самых разных областях: от медицины и до оптики.

Франций

А если не останавливаться на цезии и спуститься ещё ниже, то мы попадем на франций. Он сохраняет все свойства и особенности цезия, но выводит их на качественно новый уровень, ведь у него электронных орбит ещё больше, а значит и тот самый одинокий электрон находится ещё дальше от центра.

Долгое время он был теоретически предсказан и даже описан, но найти его или пролучит все не удавалось, что тоже не удивительно, ведь в природе он содержится в мизерных количествах (меньше – только астата). А даже если его получить, то из-за высокой радиоактивности и быстрого периода полураспада он остается крайне нестабильным.

Интересно, что во франции воплотилась мечта средневековых алхимиков, только наоборот. Они мечтали получать золото из других веществ, а здесь для получения используют золото, которое после бомбардировки электронами превращается в франций. Но даже так его можно получить в ничтожно малых количествах, недостаточных даже для тщательного изучения.

Таким образом, именно франций остается самым активным из металлов, далеко опережая все остальные. Конкуренцию ему может составить только цезий, да и то, исключительно за счет более весомого количества. Даже самый активный неметалл, фтор, значительно уступает ему.

При комнатной (20 °С) все металлы, кроме ртути, пребывают в твердом состоянии и хорошо проводят тепло и . На срезе металлы блестят и не­которые, как железо и никель, обладают магнитными свойствами. Многие металлы пластичны - из них можно делать проволоку - и ковки - им несложно при­дать другую форму.

Благородные металлы

Благородные металлы в земной коре встречаются в чистом виде, а не в составе соединений. К ним относятся медь, се­ребро, золото и платина. Они химически пассивны и с трудом вступают в с другими . Медь — благородный металл. Золото — один из самых инертных элементов. Из-за своей инертности благородные металлы не подвержены коррозии, поэтому из них делают украшения и монеты. Золото настолько инертно, что древние золотые изделия до сих пор ярко сияют.

Щелочные металлы

Группу 1 в периодической таблице состав­ляют 6 очень активных металлов, в т.ч. натрий и калий. Они плавятся при сравнительно низкой температуре (темпера­тура плавления калия 64 °С) и настолько мягкие, что их можно резать ножом. Вступая в реакцию с водой, эти металлы образуют щелочной раствор и поэтому называются щелочными. Калий бурно реагирует с водой. При этом выделяется , который сгорает сиреневым пламенем.

Щелочноземельные металлы

Шесть металлов, составляющих 2-ю группу (в т.ч. магний и кальций), называются щелочноземельными. Эти металлы входят в состав множества минералов. Так, кальций имеется в кальците, прожилки которого можно обнаружить в известняке и меле. Щелочноземельные металлы менее активны, чем щелочные, они тверже и плавятся при более высокой температуре. Кальций содержится в ракушках, костях и губках. Магний входит в состав хлорофилла, зеленого пигмента, необходимого для фотосинтеза.

Металлы 3-й и 4-й групп

Семь металлов этих групп расположены в периодической таблице справа от переходных металлов. Алюминий - один из наименее плотных металлов, поэтому он легкий. А вот свинец очень плотный; из него делают экраны, защищающие от рентгеновских лу­чей. Все эти металлы довольно мягкие и плавятся при относительно низкой тем­пературе. Многие из них используются в сплавах - создаваемых с определенными целями смесях металлов. Велосипеды и самолеты делают из алюминиевых сплавов.

Переходные металлы

Переходные металлы обладают типично металлическими свойствами. Они прочные, твердые, блестящие и плавятся при высоких температурах. Они менее актив­ны, чем щелочные и щелочноземельные металлы. К ним относятся железо, золото, серебро, хром, никель, медь. Они все ковкие и широко применяются в промышленности - как в чистом виде, так и в виде сплавов. Около 77% от массы автомобиля составляют металлы, в основном сталь, т.е. сплав железа и углерода (см. статью « «). Ступицы колес делают из хромированной стали - для блеска и предохранения от коррозии. Корпус машины сделан из листовой стали. Стальные бамперы предохраняют автомобиль в случае столкновения.

Ряд активности

Положение металла в ряду активности показывает, насколь­ко охотно металл вступает в реакции. Чем более активен металл, тем легче он отнимает кислород у менее активных металлов. Активные металлы трудно выде­лить из соединений, тогда как малоактивные металлы встречаются в чистом виде. Калий и натрий хранят в керосине, так как они моментально вступают в реакции с водой и воздухом. Медь – наименее активный металл из числа недорогих. Она используется в производстве труб, резервуаров для горячей воды и электрических проводов.

Металлы и пламя

Некоторые металлы, если поднести их к огню, придают пламени определенный оттенок. По цвету пламени можно определить присутствие в соединении того или иного металла. Для этого крупинку вещества помешают в пламя на конце проволоки из инертной платины. Соединении натрия окрашивают пламя в желтый цвет, соединения меди - в сине-зеленый, соединении кальции - в красный, и калия - в сиреневый. В состав фейерверков входят разные металлы, сообщающие пламени разные оттенки. Барий дает зеленый цвет, стронций - красный, натрий - желтый, а медь - сине-зеленый.

Коррозия

Коррозия - это химическая реакция, происходящая при контакте металла с воздухом или водой. Металл взаимодействует с кислородом воздуха, и на его поверхности образуется оксид. Металл теряет блеск и покрывается налетом. Высокоактивные металлы подвергаются коррозии быстрее, чем менее активные. Рыцари смазывали стальные доспехи маслом или воском, чтобы они не ржавели (сталь содержит много железа). Для предохранения от ржавчины стальной корпус автомобиля покрывают несколькими слоями краски. Некоторые металлы (например, алюминий) покрываются защищающей их плотной оксидной пленкой. Железо при коррозии образует неплотную пленку оксида, кото­рая при реакции с водой дает ржавчину. Слой ржавчины легко осыпается, и процесс коррозии распространяется вглубь. Для предохранения от коррозии стальные консервные банки покрывают слоем олова - менее активного металла. Крупные сооружения, например мосты, спасает от коррозии краска. Движущиеся части машин, например велосипедные цепи, смазывают маслом, чтобы спасти от коррозии.

Способ предохранения стали от коррозии путем покрытия слоем цинка называется гальванизацией. Цинк активнее стати, поэтому он «оттягивает» от нее кислород. Даже если цинковый слой поцарапается, кислород воздуха будет быстрее взаимодействовать с цинком, чем с железом. Для зашиты судов от коррозии к их корпусам прикрепляют блоки цинка или магния, которые корродируют сами, но защищают судно. Для дополнительной защиты от коррозии стальные листы корпуса автомобилей чисто гальванизируют перед покраской. С внутренней стороны их иногда покрывают пластиком.

Как открывали металлы

Вероятно, люди узнали, как получить металлы, случайно, когда металлы выделялись из минералов при нагревании их в печах с древесным углем. Чистый металл выделяется из соединения при реакции восстановления. На таких реакциях основано действие доменных печей. Около 4000 г. до н.э. Шумеры (узнайте больше в статье « «) делали золотые, серебряные и медные шлемы и кинжалы. Раньше всего люди научились обрабатывать медь, зо­лото и серебро, т.е. благородные металлы, поскольку они встречаются в чистом виде. Около 3500 г. до н.э. шумеры научились делать бронзу - сплав меди и олова. Бронза прочнее благородных металлов. Железо было открыто позднее, так как для извлечения его из соединений нужны весьма высокие температуры. На рисунке справа изображены бронзовый топор (500 г. до н.э.) и шумерская бронзовая чаша.

До 1735 г. люди знали всего несколько металлов: медь, серебро, золото, железо, ртуть, олово, цинк, висмут, сурьму и свинец. Алюминий был открыт в 1825 г. В наши дни ученые синтезировали ряд новых металлов, облучая в ядерном реакторе урана нейтронами и другими элементарными частицами. Эти элементы нестабильны и очень быстро распадаются.

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению

то получим ряд напряжений металлов. В этот ряд всегда помешают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот.

Таблица 19. Ряд напряжений металлов

Ряд напряжений для важнейших металлов приведен в табл. 19. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы в виде простых веществ - восстановителями. При этом, чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы, и наоборот, чем ближе металл к началу ряда, тем более сильные восстановительные свойства проявляет простое вещество - металл.

Потенциал электродного процесса

в нейтральной среде равен В (см. стр. 273). Активные металлы начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием .

Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже , так как образующаяся при взаимодействии свинца с серной кислотой соль нерастворима и создает на поверхности металла защитную пленку. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом - пассивным состоянием.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния.

Вытеснение металлов из их соединений другими металлами впервые подробно изучал Бекетов. В результате своих работ он расположил металлы по их химической активности в вытеснительный ряд», являющийся прототипом ряда напряжений металлов.

Взаимное положение некоторых металлов в ряду напряжений и в периодической системе на первый взгляд не соответствует друг, другу. Например, согласно положению в периодической системе химическая активность калия должна быть больше, чем натрия, а натрия - больше, чем лития. В ряду же напряжений наиболее активным оказывается литий, а калий занимает среднее положение между литием и натрием. Цинк и медь по их положению в периодической системе должны иметь приблизительно равную химическую активность, но в ряду напряжений цинк расположен значительно раньше меди. Причина такого рода несоответствий состоит в следующем.

При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности - восстановительной способности - принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными слоями (см. § 31). Поэтому атомы калия проявляют большую химическую активность - обладают более сильными восстановительными свойствами, - чем атомы натрия, а атомы натрия - большую активность, чем атомы лития.

При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых: энергии атомизации - превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов - отрыва от них валентных электронов - непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса.

Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ноны калия.

Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно - энергия ионизации-непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, в соответствии с чем литий стоит в ряду напряжений раньше калия.

Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих Металлов: цинк плавится при , а медь только при . Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений.

При переходе от воды к неводным растворителям взаимное положение металлов в ряду напряжений может изменяться. Причина этого лежит в том, что энергия сольватации ионов различных металлов по-разному изменяется при переходе от одного растворителя к другому.

В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях; это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытесняет его из растворов кислот.

Таким образом, в отличие от периодической системы элементов, ряд напряжений металлов не является отражением общей Закономерности, на основе которой можно давать разностороннюю Характеристику химических свойств металлов. Ряд напряжений Характеризует лишь окислительно-восстановительную способность Электрохимической системы «металл - ион металла» в строго определенных условиях: приведенные в нем величины относятся к водному раствору, температуре и единичной концентрации (активности) ионов металла.

В разделе на вопрос Активные металлы, это какие металлы? заданный автором Olesya Oleskina лучший ответ это Те, которые наиболее легко отдают электроны.
Активность металлов в системе Менделеева возрастает сверху вниз и справа налево, таким образом, самый активный - франций, на последнем слое у которого 1 электрон, расположенный достаточно далеко от ядра.
Активные - щелочные металлы (Li, Na, K, Rb, Cs, Fr)
Уступают им щелочноземельные (Са, Sr, BA, Ra)
Штирлиц
Искусственный Интеллект
(116389)
Их к щелочноземельным не относят

Ответ от Наталия Косенко [гуру]
Те, которые легко вступают в реакцию))


Ответ от Ѓчитель. [гуру]
Быстро окисляющиеся на воздухе, натрий калий, литий.


Ответ от KSY [гуру]
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tс, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au


Ответ от Durchlaucht Furst [гуру]
Щелочны́е мета́ллы - элементы главной подгруппы I группы Периодической системы химических элементов Д. И. Менделеева: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr. Эти металлы получили название щелочных, потому что большинство их соединений растворимо в воде. По-славянски «выщелачивать» означает «растворять» , это и определило название данной группы металлов. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами.
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, азоту их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.


Обезличенный металлический счёт на Википедии
Обезличенный металлический счёт

Обыкновенная белка на Википедии
Посмотрите статью на википедии про Обыкновенная белка

Щелочные металлы на Википедии
Посмотрите статью на википедии про Щелочные металлы



Что еще почитать