Кто открыл что температура влияет на жидкость. Молекулярная физика. Кипение жидкости. Переохлажденный пар и перегретая жидкость

Каждый знает, что температура кипения воды при обычном атмосферном давлении (около 760 мм рт. ст.) составляет 100 °С. Но не всем известно, что вода может закипать при различной температуре. Точка закипания зависит от ряда факторов. Если срабатывают определенные условия, вода может закипеть и при +70 °С, и при +130 °С, и даже при 300 °С! Рассмотрим причины более подробно.

От чего зависит температура кипения воды?

Закипание воды в емкости происходит по определенному механизму. В процессе нагрева жидкости на стенках емкости, в которую она налита, появляются пузырьки воздуха. Внутри каждого пузырька находится пар. Температура пара в пузырьках изначально значительно выше нагреваемой воды. Но ее давление в этот период выше, чем внутри пузырьков. Пока вода не прогрелась, пар в пузырьках сжимается. Затем под воздействием внешнего давления пузырьки лопаются. Процесс длится до тех пор, пока температуры жидкости и пара в пузырьках не сравняются. Именно теперь шарики с паром могут подняться на поверхность. Вода начинает закипать. Далее процесс нагрева прекращается, так как излишки тепла выводятся паром наружу в атмосферу. Это термодинамическое равновесие. Вспомним физику: давление воды состоит из веса самой жидкости и давления воздуха над сосудом с водой. Таким образом, меняя один из двух параметров (давление жидкости в сосуде и давление атмосферы), можно изменить температуру закипания.

Какова температура кипения воды в горах?

В горах температура кипения жидкости постепенно падает. Это связано с тем, что атмосферное давление при восхождении на гору постепенно понижается. Чтобы вода закипела, давление в пузырьках, которые появляются в процессе нагрева воды, должно быть равным атмосферному. Поэтому с увеличением высоты в горах на каждые 300 м температура кипения воды снижается приблизительно на один градус. Такой кипяток не такой горячий, как кипящая жидкость на равнинной местности. На большой высоте сложно, а иногда и невозможно заварить чай. Зависимость кипения воды от давления выглядит таким образом:

Высота над уровнем моря

Температура закипания

А в других условиях?

А какова температура кипения воды в вакууме? Вакуум представляет собой разреженную среду, в которой давление значительно ниже атмосферного. Температура кипения воды в разреженной среде также зависит от остаточного давления. При давлении в вакууме 0,001 атм. жидкость закипит при 6,7 °С. Обычно остаточное давление составляет около 0,004 атм., поэтому при таком давлении вода закипает при 30 °С. При увеличении давления в разреженной среде, температура кипения жидкости будет повышаться.

Почему в герметической емкости вода кипит при более высокой температуре?

В герметически закрытом сосуде температура кипения жидкости связана с давлением внутри емкости. В процессе нагрева происходит выделение пара, который оседает конденсатом на крышке и стенках сосуда. Таким образом, увеличивается давление внутри сосуда. Например, в скороварке давление достигает 1,04 атм., поэтому жидкость кипит в ней при 120 °С. Обычно в таких емкостях давление можно регулировать при помощи встроенных клапанов, следовательно, и температуру тоже.

Поскольку давление насыщающего пара однозначно определяется температурой, а кипение жидкости наступает в тот момент, когда давление насыщающих паров этой жидкости равно внешнему давлению, температура кипения должна зависеть от внешнего давления. С помощью опытов легко показать, что при уменьшении внешнего давления температура кипения понижается, а при увеличении давления - повышается.

Кипение жидкости при пониженном давлении можно показать с помощью следующего опыта. В стакан наливают воду из водопровода и опускают в нее термометр. Стакан с водой помещают под стеклянный колпак вакуумной установки и включают насос. Когда давление под колпаком достаточно понизится, вода в стакане начинает кипеть. Так как на парообразование затрачивается энергия, то температура воды в стакане при кипении начинает понижаться, и при хорошей работе насоса вода наконец закерзает.

Нагревание воды до высоких температур осуществляют в котлах и автоклавах. Устройство автоклава показано на рис. 8.6, где К - предохранительный клапан, - рычаг, прижимающий клапан, М - манометр. При давлениях больше 100 атм воду нагревают до температуры выше 300 °С.

Таблица 8.2. Точки кипения некоторых веществ

Температура кипения жидкости при нормальном атмосферном давлении называется точкой кипения. Из табл. 8.1 и 8.2 вцдно, что давление насыщающих паров для эфира, воды и спирта в точке кипения равно 1,013 105 Па (1 атм).

Из изложенного выше следует, что в глубоких шахтах вода должна кипеть при температуре выше 100 °С, а в горных местностях - ниже 100 °С. Поскольку температура кипения воды зависит от высоты над уровнем моря, на шкале термометра вместо температуры можно указать ту высоту, на которой кипит вода при этой температуре. Определение высоты с помощью такого термометра называется гипсометрией.

Опыт показывает, что температура кипения раствора всегда выше, чем температура кипения чистого растворителя, и возрастает при увеличении концентрации раствора. Однако температура паров над поверхностью кипящего раствора равна температуре кипения чистого растворителя. Поэтому для определения температуры кипения чистой жидкости термометр лучше помещать не в жидкость, а в пары над поверхностью кипящей жидкости.

Процесс кипения тесно связан с наличием растворенного газа в жидкости. Если из жидкости удалить растворенный в ней газ, например, продолжительным кипячением, то можно нагревать эту жидкость до температуры, заметно превышающей температуру ее кипения. Такую жидкость называют перегретой. При отсутствии газовых пузырьков зарождению мельчайших пузырьков пара, которые могли бы стать центрами парообразования, препятствует лапласовское давление, которое при малом радиусе пузырька велико. Этим и объясняется перегрев жидкости. Когда она все же закипает, кипение происходит очень бурно.

Зависимость температуры кипения от давления

Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.

Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.

Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, «как трудно сварить яйцо в кипятке» или «почему кипяток не обжигает». В этих случаях им указывают, что вода кипит на вершине Эльбруса уже при 82 °C.

В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?

Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.

Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.

Вода кипит при 100 °C только при определенном давлении – 760 мм Hg.

Кривая температуры кипения в зависимости от давления показана на рис. 98. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82 °C.

А вот водой, кипящей при 10–15 мм Нg, можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10–15 °C.

Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм Hg.

Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.

Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т.е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas – полость).

Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200 °C, а давление в 80 атм заставит воду закипеть лишь при 300 °C.

Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и «перевернуть», сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.

Кривая, изображающая температуру кипения в зависимости от давления, является одновременно и кривой упругости пара в зависимости от температуры.

Цифры, нанесенные на график температуры кипения (или на график упругости пара), показывают, что упругость пара меняется очень резко с изменением температуры. При 0 °C (т.е. 273 K) упругость пара равна 4,6 мм Hg, при 100 °C (373 K) она равна 760 мм, т. е, возрастает в 165 раз. При повышении температуры вдвое (от 0 °C, т.е. 273 K, до 273 °C, т.е. 546 K) упругость пара возрастает с 4,6 мм Hg почти до 60 атм, т.е. примерно в 10000 раз.

Поэтому, напротив, температура кипения меняется с давлением довольно медленно. При изменении давления вдвое – от 0,5 атм до 1 атм, температура кипения возрастает от 82 °C (т.е. 355 K) до 100 °C (т.е. 373 K) и при изменении вдвое от 1 атм до 2 атм – от 100 °C (т.е. 373 K) до 120 °C (т.е. 393 K).

Та же кривая, которую мы сейчас рассматриваем, управляет и конденсацией (сгущением) пара в воду.

Превратить пар в воду можно либо сжатием, либо охлаждением.

Как во время кипения, так и в процессе конденсации точка не сдвинется с кривой, пока превращение пара в воду или воды в пар не закончится полностью. Это можно сформулировать еще и так: в условиях нашей кривой и только при этих условиях возможно сосуществование жидкости и пара. Если при этом не подводить и не отнимать тепла, то количества пара и жидкости в закрытом сосуде будут оставаться неизменными. Про такие пар и жидкость говорят, что они находятся в равновесии, и пар, находящийся в равновесии со своей жидкостью, называют насыщенным.

Кривая кипения и конденсации имеет, как мы видим, еще один смысл – это кривая равновесия жидкости и пара. Кривая равновесия делит поле диаграммы на две части. Влево и вверх (к большим температурам и меньшим давлениям) расположена область устойчивого состояния пара. Вправо и вниз – область устойчивого состояния жидкости.

Кривая равновесия пар – жидкость, т.е. кривая зависимости температуры кипения от давления или, что то же самое, упругости пара от температуры, примерно одинакова для всех жидкостей. В одних случаях изменение может быть несколько более резким, в других – несколько более медленным, но всегда упругость пара быстро растет с увеличением температуры.

Уже много раз мы пользовались словами «газ» и «пар». Эти два слова довольно равноправны. Можно сказать: водяной газ есть пар воды, газ кислород есть пар кислородной жидкости. Все же при пользовании этими двумя словами сложилась некоторая привычка. Так как мы привыкли к определенному относительно небольшому интервалу температур, то слово «газ» мы применяем обычно к тем веществам, упругость пара которых при обычных температурах выше атмосферного давления. Напротив, о паре мы говорим тогда, когда при комнатной температуре и давлении атмосферы вещество более устойчиво в виде жидкости.

Из книги Физики продолжают шутить автора Конобеев Юрий

К квантовой теории абсолютного нуля температуры Д. Бак, Г. Бете, В. Рицлер (Кембридж) «К квантовой теории абсолютного нуля температуры» и заметки, переводы которых помещены ниже: К квантовой теории абсолютного нуля температуры Движение нижней челюсти у крупного

Из книги Физики шутят автора Конобеев Юрий

К квантовой теории абсолютного нуля температуры Ниже помещен перевод заметки» написанной известными физиками и опубликованной в «Natur-wissenschaften». Редакторы журнала «попались на удочку громких имен» и, не вдаваясь в существо написанного, направили полученный материал в

Из книги Медицинская физика автора Подколзина Вера Александровна

6. Математическая статистика и корреляционная зависимость Математическая статистика – наука о математических методах систематизации и использования статистических данных для решения научных и практических задач. Математическая статистика тесно примыкает к теории автора

Из книги автора

Изменение давления с высотой С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на

Из книги автора

Влияние давления на температуру плавления Если изменить давление, то изменится и температура плавления. С такой же закономерностью мы встречались, когда говорили о кипении. Чем больше давление, тем выше температура кипения. Как правило, это верно и для плавления. Однако

Чтобы приготовить различные вкусные блюда, часто необходима вода, и, если ее нагревать, то она рано или поздно закипит. Каждый образованный человек при этом знает, что вода начинает кипеть при температуре, равной ста градусам Цельсия, и при дальнейшем нагревании ее температура не меняется. Именно это свойство воды используется в кулинарии. Однако далеко не всем известно, что это бывает не всегда так. Вода может закипать при разной температуре в зависимости от условий, в которых она находится. Давайте попробуем разобраться, от чего зависит температура кипения воды, и как это нужно использовать.

При нагревании температура воды приближается к температуре кипения, и по всему объему образуются многочисленные пузырьки, внутри которых находится водяной пар. Плотность пара меньше, чем плотность воды, поэтому сила Архимеда, действующая на пузырьки, поднимает их на поверхность. При этом объем пузырьков то увеличивается, то уменьшается, поэтому закипающая вода издает характерные звуки. Достигая поверхности, пузырьки с водяным паром лопаются, по этой причине кипящая вода интенсивно булькает, выпуская водяной пар.

Температура кипения в явном виде зависит от давления, оказываемого на поверхность воды, что объясняется зависимостью давления насыщенного пара, находящегося в пузырьках, от температуры. При этом количество пара внутри пузырьков, а вместе с этим и их объем, увеличиваются до тех пор, пока давление насыщенного пара не будет превосходить давление воды. Это давление складывается из гидростатического давления воды, обусловленного гравитационным притяжением к Земле, и внешнего атмосферного давления. Поэтому температура кипения воды увеличивается при возрастании атмосферного давления и уменьшается при его уменьшении. Только в случае нормального атмосферного давления 760 мм.рт.ст. (1 атм.) вода кипит при 100 0 С. График зависимости температуры кипения воды от атмосферного давления представлен ниже:

Из графика видно, что если увеличить атмосферное давление до 1,45 атм, то вода будет кипеть уже при 110 0 С. При давлении воздуха 2,0 атм. вода закипит при 120 0 С и так далее. Увеличение температуры кипения воды может быть использовано для ускорения и улучшения процесса приготовления горячих блюд. Для этого изобрели скороварки – кастрюли с особой герметично закрывающейся крышкой, снабженные специальными клапанами для регулирования температуры кипения. Из-за герметичности давление в них повышается до 2-3 атм., что обеспечивает температуру кипения воды 120-130 0 С. Однако при этом нужно помнить, что использование скороварок сопряжено с опасностью: пар, выходящий из них, имеет большое давление и высокую температуру. Поэтому нужно быть максимально осторожными, чтобы не получить ожог.

Обратный эффект наблюдается, если атмосферное давление понижается. В этом случае температура кипения тоже уменьшается, что и происходит при увеличении высоты над уровнем моря:

В среднем, при подъеме на 300 м температура кипения воды уменьшается на 1 0 С и достаточно высоко в горах опускается до 80 0 С, что может привести к некоторым трудностям в приготовлении еды.

Если же дальше уменьшать давление, например, откачивая воздух из сосуда с водой, то при давлении воздуха 0,03 атм. вода будет кипеть уже при комнатной температуре, и это достаточно необычно, так как привычная температура кипения воды – 100 0 С.

Для чего человек начал кипятить воду перед её непосредственным употреблением? Правильно, чтобы обезопасить себя от многих болезнетворных бактерий и вирусов. Эта традиция пришла на территорию средневековой России ещё до Петра Первого, хотя считается, что именно он завёз первый самовар в страну и ввёл обряд неспешного вечернего чаепития. На самом деле некое подобие самоваров наш народ использовал ещё в древней Руси для приготовления напитков из трав, ягод и корений. Кипячение требовалось здесь в основном для извлечения полезных экстрактов растений, нежели для обеззараживания. Ведь в ту пору даже не было известно о микромире, где эти бактерии с вирусами обитают. Однако благодаря кипячению нашу страну обходили стороной мировые пандемии страшных заболеваний, таких как холера или дифтерия.

Шкала Цельсия

Великий метеоролог, геолог и астроном из Швеции изначально использовал значение в 100 градусов для обозначения точки замерзания воды при нормальных условиях, а температура кипения воды была принята за нуль градусов. И уже после его смерти в 1744 году не менее известная личность, ботаник Карл Линней и приемник Цельсия Мортен Штремер, перевернули эту шкалу для удобства её использования. Однако, по другим сведениям, это сделал сам Цельсий незадолго до своей кончины. Но в любом случае стабильность показаний и понятная градуировка повлияли на повсеместное распространение её использования среди самых престижных на то время научных профессий - химиков. И, несмотря на то что в перевернутом виде отметка шкалы в 100 градусов устанавливала точку стабильного кипения воды, а не начала её замерзания, шкала стала носить имя первостепенного её создателя, Цельсия.

Ниже атмосферы

Однако не всё так просто, как кажется на первый взгляд. Взглянув на любую диаграмму состояния в P-T- или P-S-координатах (энтропия S функциональна от температуры в прямой зависимости), мы увидим, как тесно связаны между собой температура и давление. Так же и воды в зависимости от давления меняет свои значения. И любому альпинисту прекрасно знакомо это свойство. Каждый, кто хоть раз в жизни постигал высоты свыше 2000-3000 метров над уровнем моря, знает, насколько тяжело дышится на высоте. Это из-за того, что чем выше мы поднимаемся, тем разреженнее становится воздух. Атмосферное давление падает ниже одной атмосферы (ниже н. у., то есть ниже "нормальных условий"). Падает и температура кипения воды. В зависимости от давления на каждой из высот она может закипать как при восьмидесяти, так и при шестидесяти

Скороварки

Однако следует помнить, что хоть основные микробы и погибают при температурах выше шестидесяти градусов Цельсия, многие могут выжить при восьмидесяти и более градусах. Именно поэтому мы добиваемся кипячения воды, то есть доводим её температуру до 100 °С. Однако есть интересные кухонные приборы, позволяющие сократить время и нагреть жидкость до высоких температур, без её кипячения и потери массы посредством испарения. Понимая, что температура кипения воды в зависимости от давления может изменяться, инженеры из США на основе французского прототипа представили миру в 1920-х годах скороварку. Принцип её действия основан на том, что крышка плотно прижимается к стенкам, без возможности отвода пара. Внутри создаётся повышенное давление, и вода закипает при более высоких температурах. Однако такие девайсы довольно опасны и нередко приводили к взрыву и серьёзным ожогам пользователей.

В идеале

Давайте рассмотрим, как наступает и проходит сам процесс. Вообразим себе идеально гладкую и бесконечно большую поверхность нагрева, где распределение теплоты происходит равномерно (к каждому квадратному миллиметру поверхности подводится одинаковое количество тепловой энергии), а коэффициент шероховатости поверхности стремится к нулю. В этом случае при н. у. кипение в ламинарном погранслое будет начинаться одновременно по всей площади поверхности и происходить моментально, сразу испаряя весь единичный объём жидкости, находящейся на её поверхности. Это идеальные условия, в реальной жизни такого не бывает.

В реальности

Давайте выясним, какова начальная температура кипения воды. В зависимости от давления она тоже меняет свои значения, однако основной момент здесь кроется вот в чём. Если даже мы возьмём самую гладкую, на наш взгляд, кастрюлю и поднесём её под микроскоп, то в его окуляре мы увидим неравномерные края и острые частые пики, выступающие над основной поверхностью. Теплота к поверхности кастрюли, будем считать, подводится равномерно, хотя в реальности это тоже не совсем верное утверждение. Даже когда кастрюля стоит на самой крупной конфорке, на плите градиент температур распределяется неравномерно, и всегда существуют локальные зоны перегрева, отвечающие за раннее кипение воды. Сколько градусов при этом на пиках поверхности и в её низинах? Пики поверхности при бесперебойном подведении теплоты прогреваются быстрее низин и так называемых впадин. Более того, окруженные со всех сторон водой с низкой температурой, они лучше отдают энергию молекулам воды. Коэффициент температуропроводности пиков в полтора-два раза выше, чем у низин.

Температуры

Именно поэтому начальная температура кипения воды составляет порядка восьмидесяти градусов Цельсия. При этом значении пики поверхности подводят достаточное необходимого для мгновенного вскипания жидкости и образования первых пузырьков, видимых глазу, которые робко начинают подниматься к поверхности. А какова температура кипения воды при нормальном давлении - спрашивают многие. Ответ на этот вопрос можно без труда найти в таблицах. При атмосферном давлении стабильное кипение устанавливается при 99,9839 °С.



Что еще почитать