Двигатель торпеды. Торпеды. Системы управления движением торпед

Что такое морские мины и торпеды? Как они устроены и каковы принципы их действия? Являются ли в настоящее время мины и торпеды таким же грозным оружием как и во времена прошедших войн?

Обо всем этом рассказывается в брошюре.

Она написана по материалам открытой отечественной и зарубежной печати, а вопросы использования и развития минно-торпедного оружия изложены по взглядам иностранных специалистов.

Адресуется книга широкому кругу читателей, особенно молодежи, готовящейся к службе в Военно-Морском Флоте СССР.

Торпеды наших дней

Торпеды наших дней

На вооружении иностранных ВМС находятся сейчас торпеды различных типов. Они классифицируются в зависимости от того, какой заряд заключен в боевой части - ядерный или обычное взрывчатое вещество. Торпеды различаются также по виду силовых установок, которые могут быть парогазовыми, электрическими или реактивными.

По габаритно-весовым характеристикам американские торпеды подразделяются на две основные категории: тяжелые - калибром 482-и 533 мм и малогабаритные - от 254 до 324 мм.

Неодинаковы торпеды и по длине. Для американских торпед характерна стандартная длина, соответствующая принятой в ВМС США длине торпедных аппаратов - 6,2 м (в других странах 6,7-7,2). Это ограничивает возможности помещения запасов топлива, а следовательно, и дальность хода торпед.

По характеру своего маневрирования после выстрела торпеды бывают прямоидущими, маневрирующими и самонаводящимися. В зависимости от способа взрыва существуют торпеды контактные и неконтактные.

Большинство современных торпед - дальноходные, способные поражать цели на дистанциях 20 км и более. По скорости нынешние торпеды во много раз превосходят образцы периода второй мировой войны.

Как же устроена парогазовая торпеда? Она (рис. 18, а) представляет собой самодвижущийся и самоуправляемый стальной подводный снаряд, сигарообразной формы, длиной около 7 м, в котором размещены сложные приборы и мощный заряд взрывчатого вещества. Почти все современные торпеды состоят из четырех сочлененных между собой частей: боевого зарядного отделения; отделения энергокомплектов с отсеком пускорегулирующей аппаратуры или аккумуляторного отделения; кормовой части с двигателем и приборами управления; хвостовой части с рулями и винтами.

В боевом зарядном отделении торпеды, кроме взрывчатого вещества, помещаются взрыватели и запальные приспособления.

Имеются взрыватели контактного и неконтактного действия. Контактные взрыватели (ударники) бывают инерционные и лобовые. Они действуют при ударе торпеды о борт корабля, в результате чего иглы ударника приводят в действие капсюли-воспламенители. Последние, взрываясь, воспламеняют взрывчатое вещество, находящееся в запальном станке. Это взрывчатое вещество является вторичным детонатором, от действия которого происходит взрыв всего заряда, находящегося в зарядном отделении торпеды.

Инерционные ударники с запальными стаканами вставляются в верхнюю часть боевого зарядного отделения в специальные гнезда (горловины). Принцип действия этого ударника основан на инерции маятника, который, отклоняясь от вертикального положения, при столкновении торпеды с бортом корабля освобождает боек, а тот, в свою очередь, под действием боевой пружины опускается вниз и накалывает своими иглами капсюли, вызывая их воспламенение.

Чтобы на стреляющем корабле не произошло взрыва снаряженной торпеды от случайного сотрясения, толчка, взрыва вблизи корабля или от удара торпеды о воду в момент выстрела, у инерционного ударника есть специальное предохранительное приспособление, стопорящее маятник.


а -парогазовая: 1 - запальный стакан; 2 - инерционный ударник; 3 - запирающий кран; 4 - машинный кран; 5 - прибор расстояния; 5-машина; 7 - курок; 8- гироскопический прибор; 9 -гидростатический прибор; 10 - Керосиновый резервуар; 11 - машинный регулятор;

б - электрическая: 1 -взрывчатое вещество; 2 - взрыватель; 3 - аккумуляторы; 4 - электродвигатели; 5 - пусковой контактор; 6 - гидростатический прибор; 7 - гироскопический прибор; 8 - вертикальный руль; 9 - передний винт; 10 - задний винт; 11 - горизонтальный руль; 12 -баллоны со сжатым воздухом; 13 - прибор для сжигания водорода

Предохранительное устройство связано с валом вертушки, вращающейся под действием встречного потока воды. При движении торпеды вертушка отстопоривает маятник, опуская иглы и сжимая боевую пружину бойка. Ударник приводится в боевое положение только тогда, когда торпеда после выстрела пройдет в воде 100т- 200 м.

Существует много различных типов контактных торпедных взрывателей. В некоторых американских торпедах, оснащенных взрывателями других типов, взрыв торпеды происходит не от удара бойка по капсюлю-воспламенителю, а в результате замыкания электрической цепи.

Предохранительное устройство от случайного взрыва состоит здесь также из вертушки. Вал вертушки вращает генератор постоянного тока, который вырабатывает энергию и заряжает конденсатор, выполняющий роль аккумулятора электрической энергии.

В начале движения торпеда безопасна - цепь от генератора к конденсатору разомкнута при помощи колеса-замедлителя, и детонатор находится внутри предохранительной камеры. Когда торпеда пройдет определенную часть пути, вращающийся вал вертушки поднимет детонатор из камеры, колесо-замедлитель замкнет цепь и генератор начнет заряжать конденсатор.

Лобовой ударник вставляется горизонтально в переднюю часть боевого зарядного отделения торпеды. При ударе торпеды о борт корабля боек лобового ударника под действием пружины накалывает капсюль-воспламенитель первичного детонатора, который воспламеняет вторичный детонатор, а последний вызывает взрыв всего заряда.

Чтобы произошел взрыв при попадании торпеды в корабль даже под углом, лобовой ударник снабжается несколькими металлическими рычагами - "усами", расходящимися в разные стороны. При задевании одним из рычагов за борт корабля рычаг смещается и освобождает ударник, который накалывает капсюль, производя взрыв.

Для предохранения торпеды от преждевременного взрыва вблизи стреляющего корабля расположенный в лобовом ударнике стержень бойка стопорится предохранительной вертушкой. После выстрела торпедой вертушка начинает вращаться и полностью отстопорит боек, когда торпеда удалится на некоторое расстояние от корабля.

Стремление повысить эффективность действия торпед привело к созданию неконтактных взрывателей, способных увеличить вероятность попадания в цель и поражать корабли в наименее защищенную часть - днище.

Неконтактный взрыватель замыкает цепь запала и взрывателя торпеды не в результате динамического удара (контакта с целью, непосредственного удара о корабль), а в результате воздействия на него различных полей, создаваемых кораблем. К ним относятся магнитные, акустические, гидродинамические и оптические поля.

Установку глубины хода торпеды с неконтактным взрывателем производят так, чтобы взрыватель срабатывал точно под днищем цели.

Для придания торпеде хода применяются различные двигатели. Парогазовые торпеды, например, приводятся в движение поршневой машиной, работающей на смеси водяного пара с продуктами сгорания керосина или другой горючей жидкости.

В парогазовой торпеде, обычно в задней части воздушного резервуара, помещается водяной отсек, в котором находится пресная вода, подаваемая для испарения в подогревательный аппарат.

В кормовой части торпеды, разделенной на отсеки (у американской торпеды Мк.15, например, кормовая часть имеет три отсека), помещаются подогревательный аппарат (камера сгорания), главная машина и механизмы, управляющие движением торпеды по направлению и глубине.

Силовая установка вращает гребные винты, которые сообщают торпеде поступательное движение. Во избежание постепенного снижения давления воздуха из-за неплотности укупорки воздушный резервуар разобщается с машиной посредством специального приспособления, имеющего запирающий кран.

Перед выстрелом запирающий кран открывается, и воздух подходит к машинному крану, который специальными тягами соединен с курком.

Во время движения торпеды в торпедном аппарате курок откидывается. Машинный кран начинает автоматически впускать воздух из воздушного резервуара в подогревательный аппарат через машинные регуляторы, которые поддерживают установленное постоянное давление воздуха в подогревательном аппарате.

Вместе с воздухом в подогревательный аппарат поступает через форсунку керосин. Он воспламеняется посредством специального зажигательного приспособления, расположенного на крышке подогревательного аппарата. В этот аппарат поступает также вода для испарения и снижения температуры горения. В результате сгорания керосина и парообразования создается парогазовая смесь, которая поступает в главную машину и приводит ее в действие.

В кормовом отделении рядом с главной машиной расположены гироскоп, гидростатический аппарат и две рулевые машинки. Одна из них служит для управления ходом торпеды в горизонтальной плоскости (удержание заданного направления) и действует от гироскопического прибора. Вторая машинка служит для управления ходом торпеды в вертикальной плоскости (удержание заданной глубины) и действует от гидростатического аппарата.

Действие гироскопического прибора" основано на свойстве быстровращающегося (20-30 тыс. об/мин) волчка сохранять в пространстве направление оси вращения, полученное в момент запуска.

Прибор запускается сжатым воздухом во время движения торпеды в трубе торпедного аппарата. Как только выпущенная торпеда по какой-либо причине начнет уклоняться от направления, заданного ей при выстреле, ось волчка, оставаясь в неизменном положении в пространстве и действуя на золотничок рулевой машинки, перекладывает вертикальные рули и тем самым направляет торпеду по заданному направлению.

Гидростатический аппарат, расположенный в нижней части корпуса торпеды, действует по принципу равновесия двух сил - давления столба воды и пружины. Изнутри торпеды на диск давит пружина, упругость которой устанавливается перед выстрелом в зависимости от того, на какой глубине торпеда должна идти, а снаружи - столб воды.



Если выстреленная торпеда идет на глубине больше заданной, то избыток давления воды на диск через систему рычагов передается к золотничку рулевой машинки, управляющей горизонтальными рулями, которая изменяет положение рулей. В результате перекладки рулей торпеда начнет подниматься вверх. При ходе торпеды выше заданной глубины давление уменьшится и рули переложатся в обратную сторону. Торпеда опустится вниз.

В хвостовой части торпеды расположены гребные винты, насаженные на валы, соединенные с главной машиной. Имеются здесь и четыре пера, на которых закреплены вертикальные и горизонтальные рули для управления ходом торпеды по направлению и глубине.

В военно-морских силах иностранных государств особенно значительное распространение получили электрические торпеды.

Электрические торпеды состоят из четырех основных частей: боевого зарядного отделения, аккумуляторного отделения, кормовой и хвостовой частей (рис. 18, б).

Двигателем электрической торпеды служит электромотор, работающий от электрической энергии аккумуляторных батарей, расположенных в аккумуляторном отделении.

Электроторпеда по сравнению с парогазовой торпедой имеет важные преимущества. Во-первых, она не оставляет за собой видимого следа, чем обеспечивается скрытность атаки. Во-вторых, во время движения электроторпеда более устойчиво держится на заданном курсе, так как в отличие от парогазовой торпеды она при движении не изменяет ни веса, ни положения центра тяжести. Кроме того, у электрической торпеды сравнительно малая шумность, производимая двигателем и приборами, что особенно ценно при атаке.

Существует три основных способа использования торпед. Стрельба торпедами производится с надводных (с надводных кораблей) и подводных (с подводных лодок) торпедных аппаратов. Торпеды могут также сбрасываться в воду с воздуха самолетами и вертолетами.

Принципиально новым является использование торпед в качестве боевых частей противолодочных ракет, пуск которых осуществляется противолодочными ракетными средствами, устанавливаемыми на надводных кораблях.

Торпедный аппарат состоит из одной или нескольких труб с установленными на них приборами (рис. 19). Надводные торпедные аппараты могут быть поворотными и неподвижными. Поворотные аппараты (рис. 20) монтируются обычно в диаметральной плоскости корабля на верхней палубе. Неподвижные торпедные аппараты, которые также могут состоять из одной, двух и более торпедных труб, размещаются, как правило, внутри надстройки корабля. В последнее время на некоторых иностранных кораблях, в частности на современных торпедных атомных подводных лодках, торпедные аппараты монтируются под некоторым углом (10°) к диаметральной плоскости.

Такое расположение торпедных аппаратов связано с тем, что в носовой части торпедных подводных лодок размещается приемо-излучающая гидроакустическая аппаратура.

Подводный торпедный аппарат похож на неподвижный надводный торпедный аппарат. Как и неподвижный надводный аппарат, подводный имеет в каждом конце трубы по крышке. Задняя крышка открывается в торпедный отсек подводной лодки. Передняя крышка открывается прямо в воду. Ясно, что если одновременно открыть обе крышки, то в торпедный отсек проникнет морская вода. Поэтому подводный, как и неподвижный надводный, торпедный аппарат снабжен механизмом взаимозамкнутости, предотвращающим одновременное открытие двух крышек.



1 - прибор для управления вращением торпедного аппарата; 2 - место для наводчика; 3 - аппаратный прицел; 4 - труба торпедного аппарата; 5 - торпеда; 6 - неподвижное основание; 7 - поворотная платформа; 8 - крышка торпедного аппарата



Для выстреливания торпеды из торпедного аппарата используются сжатый воздух либо пороховой заряд. Выстреленная торпеда движется к цели при помощи своих механизмов.

Так как торпеда обладает скоростью движения, сравнимой со скоростью хода кораблей, необходимо при выстреле торпедой по кораблю или транспорту давать ей угол упреждения в направлении движения цели. Элементарно это можно пояснить следующей схемой (рис. 21). Предположим, в момент выстрела корабль, стреляющий торпедой, находится в точке А, а корабль противника в точке В. Для того чтобы торпеда попала в цель, ее необходимо выпустить по направлению АС. Это направление выбирается с таким расчетом, чтобы торпеда, прошла путь АС за такое же время, за которое корабль противника проходит расстояние ВС.

При указанных условиях торпеда должна встретиться с кораблем в точке С.

Для увеличения вероятности попадания в цель применяется стрельба несколькими торпедами по площади, которая ведется методом веера или методом последовательного выпуска торпед.

При стрельбе методом веера торпедные трубы разводят относительно друг друга на несколько градусов и выпускают торпеды залпом. Раствор трубам дают такой, чтобы расстояние между двумя рядом идущими торпедами в момент пересечения предполагаемого курса корабля-цели не превышало длины этого корабля.

Тогда из нескольких выпущенных торпед хотя бы одна должна попасть в цель. При стрельбе последовательным выпуском торпед они выстреливаются одна за другой через определенные промежутки времени, рассчитываемые в зависимости от скорости движения торпед и длины цели.

Установка торпедных аппаратов в определенном положении для стрельбы торпедами достигается при помощи приборов управления торпедной стрельбой (рис. 22).



1 - маховик горизонтального наведения; 2 - шкала; 3 - визир



Как сообщает американская печать, торпедное вооружение подводных лодок ВМС США имеет некоторые особенности. Это прежде всего сравнительно небольшая стандартная длина торпедных аппаратов -- всего 6,4 м. Хотя тактические характеристики таких "коротких" торпед ухудшаются, зато их запас на стеллажах лодки можно увеличить до 24-40 штук.

Так как все американские атомные лодки оборудованы устройством быстрого заряжания торпед, то число аппаратов на них снижено с 8 до 4. На американских и английских атомных лодках торпедные аппараты действуют на гидравлическом принципе выстреливания, что обеспечивает безопасность, безпузырность и бездифферентность торпедной стрельбы.

В современных условиях вероятность применения торпед надводными кораблями против надводных кораблей значительно снизилась вследствие появления грозного ракетного оружия. Вместе с тем способность некоторых классов надводных кораблей - тЬрпедных катеров и эскадренных миноносцев - наносить торпедный удар еще представляет для кораблей и транспортов угрозу и ограничивает их зону возможного маневрирования. В то же время торпеды становятся все более и более важным средством борьбы с подводными лодками. Вот почему за последние годы в военно-морских силах многих иностранных государств большое значение придается противолодочным торпедам (рис. 23), которыми вооружаются авиация, подводные лодки и надводные корабли.

На вооружении подводных лодок находятся торпеды различных типов, предназначенные для поражения подводных и надводных целей. Для борьбы с надводными целями подводные лодки применяют в основном прямо идущие тяжелые торпеды с зарядом взрывчатого вещества 200-300 кг, а для поражения подводных лодок - самонаводящиеся электрические противолодочные торпеды.

Энергосиловые установки (ЭСУ) торпед предназначены для придания торпедам движения с определённой скоростью на установленную дистанцию, а также обеспечения энергией систем и агрегатов торпеды.

Принцип действия ЭСУ любого типа состоит в преобразовании того или иного вида энергии в механическую работу.

По виду используемой энергии ЭСУ подразделяются:

На парогазовые (тепловые);

Электрические;

Реактивные.

В состав каждой ЭСУ входят:

Источник энергии;

Двигатель;

Движитель;

Вспомогательное оборудование.

2.1.1. Парогазовые эсу торпед

ПГЭСУ торпед являются разновидностью тепловой машины (рис. 2.1). Источником энергии в тепловых ЭСУ является топливо, представляющее собою совокупность горючего и окислителя.

Используемые в современных торпедах виды топлива могут быть:

Многокомпонентными (горючее – окислитель – вода) (рис.2.2);

Унитарными (горючее смешано с окислителем – вода);

Твёрдые пороховые;

-
твёрдые гидрореагирующие.

Тепловая энергия топлива образуется в результате химической реакции окисления или разложения веществ, входящих в его состав.

Температура сгорания топлива составляет 3000…4000°C. При этом возникает возможность размягчения материалов, из которых изготовлены отдельные узлы ЭСУ. Поэтому вместе с топливом в камеру сгорания подают воду, что снижает температуру продуктов сгорания до 600…800°C. Кроме того, впрыскивание пресной воды увеличивает объём парогазовой смеси, что существенно повышает мощность ЭСУ.

В первых торпедах использовалось топливо, включавшее в себя керосин и сжатый воздух в качестве окислителя. Такой окислитель оказался малоэффективным из-за низкого содержания кислорода. Составная часть воздуха – азот, не растворимая в воде, выбрасывалась за борт и являлась причиной демаскирующего торпеду следа. В настоящее время в качестве окислителей используют чистый сжатый кислород или маловодную перекись водорода. При этом продуктов сгорания, не растворимых в воде, почти не образуется и след практически не заметен.

Применение жидких унитарных топлив позволило упростить топливную систему ЭСУ и улучшить условия эксплуатации торпед.

Твёрдые топлива, являющиеся унитарными, могут быть мономолекулярными или смесевыми. Чаще используются последние. Они состоят из органического горючего, твёрдого окислителя и различных добавок. Количество выделяемого при этом тепла можно регулировать количеством подаваемой воды. Применение таких видов топлива исключает необходимость нести на борту торпеды запас окислителя. Это снижает массу торпеды, что значительно повышает скорость и дальность её

Двигатель парогазовой торпеды, в котором тепловая энергия преобразуется в механическую работу вращения гребных винтов, является одним из её главных агрегатов. Он определяет основные тактико-технические данные торпеды – скорость, дальность, следность, шумность.

Торпедные двигатели имеют ряд особенностей, которые отражаются на их конструкции:

Кратковременность работы;

Минимальное время выхода на режим и строгое его постоянство;

Работа в водной среде с высоким противодавлением выхлопу;

Минимальные масса и габариты при большой мощности;

Минимальный расход топлива.

Торпедные двигатели подразделяются на поршневые и турбинные. В настоящее время наибольшее распространение получили последние (рис. 2.3).

Энергокомпоненты подаются в парогазогенератор, где поджигаются зажигательным патроном. Образующаяся парогазовая смесь под давл
ением поступает на лопатки турбины, где, расширяясь, совершает работу. Вращение колеса турбины через редуктор и дифференциал передается на внутренний и внешний гребные валы, вращающиеся в противоположные стороны.

В качестве движителей большинства современных торпед используются гребные винты. Передний винт – на наружном валу с правым вращением, задний – на внутреннем – с левым. Благодаря этому уравновешиваются моменты сил, отклоняющих торпеду от заданного направления движения.

Эффективность двигателей характеризуется величиной коэффициента полезного действия с учётом влияния гидродинамических свойств корпуса торпеды. Коэффициент снижается при достижении винтами частоты вращения, при которой на лопастях начинается

кавитаци я 1 . Одним из путей борьбы с этим вредным явлением стало п
рименение насадок на винты, позволяющее получить водомётный движитель (рис. 2.4).

К числу основных недостатков ЭСУ рассмотренного типа относятся:

Высокая шумность связанная с большим числом быстро вращающихся массивных механизмов и наличием выхлопа;

Снижение мощности двигателя и, как следствие, скорости хода торпеды с ростом глубины, обусловленное увеличением противодавления выхлопным газам;

Постепенное уменьшение массы торпеды при её движении вследствие расхода энергокомпонентов;

Агрессивность энергокомпонентов топлива.

Поиски путей, обеспечивающих исключение перечисленных недостатков, привели к созданию электрических ЭСУ.

Ракеты-торпеды - основное поражающее средство для ликвидации вражеских подводных лодок. Оригинальной конструкцией и непревзойденными техническими характеристиками долгое время отличалась советская торпеда «Шквал», до сих пор состоящая на вооружении Военно-морских сил России .

История разработки реактивной торпеды «Шквал»

Первую в мире торпеду, относительно пригодную для боевого применения по неподвижным кораблям, еще в 1865 году спроектировал и даже смастерил в кустарных условиях русский изобретатель И.Ф. Александровский. Его «самодвижущаяся мина» была впервые в истории оснащена пневмодвигателем и гидростатом (регулятор глубины хода).

Но поначалу глава профильного ведомства адмирал Н.К. Краббе посчитал разработку «преждевременной», а позднее от массового производства и принятия на вооружение отечественного «торпедо» отказались, отдав предпочтение торпеде Уайтхеда.

Это оружие английский инженер Роберт Уайтхед впервые представил в 1866 г., а пять лет спустя после усовершенствования оно поступило на вооружение Австро-венгерского флота. Российская империя вооружила свой флот торпедами в 1874 году.

С тех пор торпеды и пусковые аппараты всё больше распространялись и модернизировались. Со временем возникли особые военные корабли - миноносцы, для которых торпедное оружие было основным.

Первые торпеды оснащались пневматическими либо парогазовыми двигателями, развивали относительно небольшую скорость, и на марше оставляли за собой отчетливый след, заметив который военные моряки успевали сделать маневр - увернуться. Создать подводную ракету на электродвигателе удалось только германским конструкторам перед Второй мировой .

Преимущества торпед перед противокорабельными ракетами:

  • более массивная / мощная боевая часть;
  • более разрушительная для плавучей цели энергия взрыва;
  • невосприимчивость к погодным условиям - торпедам не помеха никакие шторма и волны;
  • торпеду сложнее уничтожить или сбить с курса помехами.

Необходимость совершенствования подводных лодок и торпедного оружия Советскому Союзу диктовали США с их отличной системой ПВО, делавшей американский морфлот почти неуязвимым для бомбардировочной авиации.

Проектирование торпеды, превосходящей существующие отечественные и зарубежные образцы скоростью благодаря уникальному принципу действия, стартовало в 1960-е годы. Конструкторскими работами занимались специалисты московского НИИ № 24, впоследствии (после СССР) реорганизованного в небезызвестное ГНПП «Регион». Руководил разработкой, давно и надолго откомандированный в Москву с Украины Г.В. Логвинович - с 1967 г. академик АН УССР. По другим данным, группу конструкторов возглавлял И.Л. Меркулов.

В 1965 новое оружие было впервые испытано на озере Иссык-Куль в Киргизии, после чего система «Шквал» более десяти лет дорабатывалась. Перед конструкторами была поставлена задача сделать ракету-торпеду универсальной, то есть рассчитанной на вооружение как подлодок, так и надводных кораблей. Также требовалось довести до максимума скорость движения.

Принятие торпеды на вооружение под наименованием ВА-111 «Шквал» датируется 1977 г. Далее, инженеры продолжали ее модернизацию и создание модификаций, включая известнейшую - Шквал-Э, разработанную в 1992 специально для экспорта.

Изначально подводная ракета была лишена системы самонаведения, оснащалась ядерной боеголовкой в 150 килотонн, способной нанести противнику урон вплоть до ликвидации авианосца со всем вооружением и кораблями сопровождения. Вскоре появились вариации с обычным боезарядом.

Предназначение данной торпеды

Будучи реактивным ракетным оружием, Шквал предназначена для нанесения ударов по подводным и надводным объектам. В первую очередь это подлодки, корабли и катера противника, также реализуема стрельба по береговой инфраструктуре.

Шквал-Э, оснащенный обычной (фугасной) боеголовкой, способен эффективно поражать исключительно надводные объекты.

Конструкция торпеды Шквал

Разработчики Шквала стремились воплотить в жизнь замысел подводной ракеты, от которой никаким маневром не сможет увернуться большой вражеский корабль. Для этого требовалось достигнуть скоростного показателя в 100 м/с, или минимум 360 км/ч.

Коллективу конструкторов удалось реализовать казавшееся невозможным - создать подводно-торпедное оружие на реактивной тяге, успешно преодолевающее сопротивление воды за счет движения в суперкавитации.

Уникальные скоростные показатели стали былью в первую очередь благодаря двойному гидрореактивному двигателю , включающему стартовую и маршевую части. Первая дает ракете максимально мощный импульс при пуске, вторая - поддерживает быстроту движения.

Стартовый двигатель - жидкотопливный, он выводит Шквал из торпедного комплекса и сразу отстыковывается.

Маршевый - твердотопливный, использующий морскую воду в качестве окислителя-катализатора, что позволяет ракете двигаться без винтов в задней части.

Суперкавитацией называется перемещение твердого предмета в водной среде с образованием вокруг него «кокона», внутри которого только водный пар. Такой пузырь значительно снижает сопротивление воды. Надувается и поддерживается он специальным кавитатором, содержащим газогенератор для наддува газов.

Самонаводящаяся торпеда поражает цель с помощью соответствующей системы управления маршевым двигателем. Без самонаведения Шквал попадает в точку согласно заданным на старте координатам. Ни подлодка, ни крупный корабль не успевает покинуть указанную точку, поскольку оба сильно уступают оружию по скорости.

Отсутствие самонаведения теоретически не гарантирует 100% точности попадания, однако, самонаводящуюся ракету противник способен сбить с курса применением устройств ПРО, а несамонаводящаяся следует к цели, невзирая на подобные препятствия.

Оболочка ракеты изготавливается из прочнейшей стали, выдерживающей огромное давление, которое испытывает Шквал на марше.

Технические характеристики

Тактико-технические показатели ракеты-торпеды Шквал:

  • Калибр - 533,4 мм;
  • Длина - 8 метров;
  • Масса - 2700 кг;
  • Мощность ядерной боеголовки - 150 кт тротила;
  • Масса обычного боезаряда - 210 кг;
  • Скорость - 375 км/ч;
  • Радиус действия - у старой торпеды около 7 километров / у модернизированной до 13 км.

Отличия (особенности) ТТХ Шквал-Э:

  • Длина - 8,2 м;
  • Дальность хода - до 10 километров;
  • Глубина хода - 6 метров;
  • Боезаряд - только фугасный;
  • Вид старта - надводный либо подводный;
  • Глубина подводного старта - до 30 метров.

Торпеду называют сверхзвуковой, но это не совсем верно, поскольку под водой она перемещается, не достигая скорости звука.

Плюсы и минусы торпеды

Достоинства гидрореактивной ракеты-торпеды:

  • Не имеющая аналогов скорость на марше, обеспечивающая фактически гарантированное преодоление любой защитной системы вражеского флота и уничтожение подлодки либо надводного корабля;
  • Мощный фугасный заряд - поражает даже крупнейшие военные корабли, а ядерный боезаряд способен одним ударом потопить всю авианесущую группу;
  • Пригодность гидрореактивного ракетного комплекса для установки в надводные корабли и на подлодки.

Недостатки Шквала:

  • высокая стоимость оружия - около 6 миллионов американских долларов;
  • точность - оставляет желать лучшего;
  • сильный шум, издаваемый на марше, в сочетании с вибрацией мгновенно демаскирует подлодку;
  • небольшая дальность хода уменьшает живучесть корабля или подводной лодки, с которой пущена ракета, особенно при использовании торпеды с ядерным боезарядом.

Фактически в стоимость пуска Шквала включено не только производство самой торпеды, но и подлодки (корабля), и ценность живой силы в количестве всего экипажа.

Дальность действия менее 14 км - это главнейший минус.

В современном морском бою пуск с такого расстояния - это самоубийственное действие для экипажа подводной лодки. Увернуться от «веера» запущенных торпед, естественно, способен только эсминец или фрегат, но скрыться с места атаки самой подлодке (кораблю) в зоне действия палубной авиации и группы обеспечения авианосца, вряд ли реально.

Эксперты даже допускают, что подводная ракета «Шквал» на сегодня может быть снята с применения из-за перечисленных серьезных недостатков, представляющихся непреодолимыми.

Возможные модификации

Модернизация гидрореактивной торпеды относится к важнейшим задачам конструкторов оружия для российских военно-морских сил. Поэтому работы по улучшению Шквала не сворачивались полностью даже в кризисные девяностые.

В настоящее время существует не менее трех модифицированных «сверхзвуковых» торпед.

  1. Прежде всего, это упомянутая выше экспортная вариация Шквал-Э, спроектированная специально для производства с целью реализации за рубеж. В отличие от стандартной торпеды, «Эшка» не рассчитана на оснащение ядерной боеголовкой и поражение подводных военных объектов. Кроме того, эта вариация характеризуется меньшей дальностью - 10 км против 13 у модернизированного Шквала, который производится для ВМФ России. Шквал-Э применяется только с пусковыми комплексами, унифицированными с российскими кораблями. Работы по конструированию модифицированных вариаций под пусковые системы отдельных заказчиков пока «в процессе»;
  2. Шквал-М - усовершенствованная вариация гидрореактивной торпедо-ракеты, завершенная в 2010 году, с лучшими показателями дальности и веса боевой части. Последняя увеличена до 350 килограммов, а дальность составляет чуть более 13 км. Проектировочные работы по совершенствованию оружия не прекращаются.
  3. В 2013 году сконструирована еще более совершенная - Шквал-М2. Обе вариации с литерой «М» строго засекречены, сведений о них почти нет.

Зарубежные аналоги

Длительное время аналоги российской гидрореактивной торпеды отсутствовали. Только в 2005г. германская компания представила изделие под наименованием «Барракуда». Как утверждают представители производителя - Diehl BGT Defence, новинка способна перемещаться с несколько большей скоростью благодаря усилению суперкавитации. «Барракуда» прошла ряд испытаний, но ее запуск в производство пока не состоялся.

В мае 2014 командующий военно-морских сил Ирана заявил, что его род войск тоже обладает подводно-торпедным оружием, которое якобы движется со скоростью до 320 км/ч. Однако в дальнейшем никаких сведений, подтверждающих либо опровергающих это заявление, не поступало.

Известно также о наличии американской подводной ракеты HSUW (High-Speed Undersea Weapon), принцип действия которой основан на явлении суперкавитации. Но эта разработка пока существует исключительно в проекте. На вооружении готового аналога Шквала пока нет ни у одного иностранного ВМФ.

Согласны ли вы с мнением, что Шквалы практически бесполезны в условиях современного морского боя? Что думаете о реактивной торпеде, здесь описанной? Быть может, обладаете собственными сведениями об аналогах? Поделитесь в комментариях, мы всегда благодарны за ваши отклики.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.

Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.

История создания

Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».

В 1865 году проект оружия (или как тогда называли «самодвижущегося торпедо») предложил российский изобретатель И.Ф. Александровский. Торпеда оборудовалась двигателем, работающим на сжатом воздухе.

Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.

Именно Уайтхед начал использовать гиростат и соосную гребную установку.

Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.

В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.

Устройство

Торпеда представляет собой самоходный снаряд, движущийся в толще воды под воздействием энергии собственной силовой установки. Все узлы расположены внутри удлиненного стального корпуса цилиндрического сечения.

В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.

В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.


Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).

При использовании жидкого топлива на борту имеется запас окислителя и воды.

Горение рабочей смеси происходит в специальном генераторе.

Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.

Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.

При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.

В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.

Принцип работы

На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.

При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.

Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.

Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.

Часть воздуха при пуске подается на механизм раскрутки гироскопа.

После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.

Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.


При ударе боевой части о корпус корабля происходит разрушение стержнями ударника капсюлей, которые вызывают детонацию боевой части. Немецкие торпеды G7a поздних серий оснащались дополнительным магнитным детонатором, срабатывавшим при достижении определенной напряженности поля. Аналогичный взрыватель использовался с 1942 года на советских торпедах 53-38У.

Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.

Параметр G7a 53-39 Mk.15mod 0 Тип 93
Производитель Германия СССР США Япония
Диаметр корпуса, мм 533 533 533 610
Вес заряда, кг 280 317 224 610
Тип ВВ Тротил ТГА Тротил -
Предельная дальность хода, м до 12500 до 10000 до 13700 до 40000
Рабочая глубина, м до 15 до 14 - -
Скорость хода, уз до 44 до 51 до 45 до 50

Наведение на цель

Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.


Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.

До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.

Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.

Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.

Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.


Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Боевое применение

Первым государством, применившим новое оружие в деле, стала Россия. Торпеды использовались во время русско-турецкой войны 1877-78 года и запускались с катеров. Второй крупной войной с использованием торпедного вооружения стала русско-японская война 1905 года.

В ходе Первой мировой войны оружие использовалось всеми воюющими сторонами не только в морях и океанах, но и на речных коммуникациях. Широкое использование подводных лодок Германией привело к большим потерям торгового флота Антанты и союзников. В ходе Второй мировой войны стали применяться усовершенствованные варианты вооружения, оснащенные электродвигателями, усовершенствованными системами наведения и маневрирования.

Любопытные факты

Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.

Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.

Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.

Видео



Что еще почитать