Rješenje primjera a. Rješavanje jednostavnih linearnih jednadžbi. Primjeri identičnih transformacija jednačina. Glavni problemi

Dom

Jednačina s jednom nepoznatom, koja nakon otvaranja zagrada i donošenja sličnih članova, poprima oblik ax + b = 0 , gdje su a i b proizvoljni brojevi, se zove linearna jednačina

sa jednom nepoznatom. Danas ćemo shvatiti kako riješiti ove linearne jednačine.

Na primjer, sve jednadžbe:

2x + 3= 7 – 0,5x; 0,3x = 0; x/2 + 3 = 1/2 (x – 2) - linearno. Vrijednost nepoznate koja pretvara jednačinu u pravu jednakost naziva se odluka ili .

korijen jednačine

Na primjer, ako u jednadžbi 3x + 7 = 13 umjesto nepoznatog x zamijenimo broj 2, dobićemo tačnu jednakost 3 2 +7 = 13. To znači da je vrijednost x = 2 rješenje ili korijen jednadžbe.

A vrijednost x = 3 ne pretvara jednačinu 3x + 7 = 13 u pravu jednakost, jer je 3 2 +7 ≠ 13. To znači da vrijednost x = 3 nije rješenje ili korijen jednačine. Rješenje bilo koje linearne jednačine

svodi na rješavanje jednačina oblika

ax + b = 0.

Pomerimo slobodni član sa leve strane jednačine udesno, menjajući predznak ispred b u suprotan, dobijamo .

Ako je a ≠ 0, tada je x = ‒ b/a Primjer 1.

Riješite jednačinu 3x + 2 =11.
Pomaknimo 2 s lijeve strane jednačine na desnu, mijenjajući predznak ispred 2 u suprotan, dobićemo

3x = 11 – 2.
Onda uradimo oduzimanje

3x = 9.
Da biste pronašli x, morate proizvod podijeliti sa poznatim faktorom, tj

x = 9:3.

To znači da je vrijednost x = 3 rješenje ili korijen jednačine..

Odgovor: x = 3 Ako je a = 0 i b = 0

, tada dobijamo jednačinu 0x = 0. Ova jednačina ima beskonačno mnogo rješenja, jer kada pomnožimo bilo koji broj sa 0 dobijamo 0, ali je b također jednako 0. Rješenje ove jednačine je bilo koji broj. Primjer 2.

Riješite jednačinu 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.
Proširimo zagrade:


5x – 15 + 2 = 3x – 12 + 2x ‒ 1.

5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.
Evo nekoliko sličnih pojmova:

0x = 0..

Odgovor: x - bilo koji broj Ako je a = 0 i b ≠ 0

, tada dobijamo jednačinu 0x = - b. Ova jednadžba nema rješenja, jer kada pomnožimo bilo koji broj sa 0 dobijamo 0, ali b ≠ 0. Primjer 3.

Riješite jednačinu x + 8 = x + 5.
Grupirajmo pojmove koji sadrže nepoznate na lijevoj strani, a slobodne pojmove na desnoj strani:

5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.
x – x = 5 – 8.

0h = ‒ 3.

Odgovor: nema rješenja. On Slika 1

Hajde da napravimo opštu šemu za rešavanje jednačina sa jednom promenljivom. Razmotrimo rješenje primjera 4.

Primjer 4. Pretpostavimo da trebamo riješiti jednačinu

1) Pomnožite sve članove jednačine najmanjim zajedničkim višekratnikom imenilaca, jednakim 12.

2) Nakon smanjenja dobijamo
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) Da biste odvojili pojmove koji sadrže nepoznate i slobodne pojmove, otvorite zagrade:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Grupirajmo u jedan dio pojmove koji sadrže nepoznate, a u drugi - slobodne pojmove:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Predstavimo slične pojmove:
- 22x = - 154.

6) Podijelimo sa – 22, dobijemo
x = 7.

Kao što vidite, korijen jednačine je sedam.

Generalno takav jednadžbe se mogu riješiti korištenjem sljedeće šeme:

a) dovesti jednačinu u njen celobrojni oblik;

b) otvorite zagrade;

c) grupirati članove koji sadrže nepoznatu u jednom dijelu jednačine, a slobodne članove u drugom;

d) dovesti slične članove;

e) rešiti jednačinu oblika ah = b, koja je dobijena donošenjem sličnih članova.

Međutim, ova šema nije neophodna za svaku jednačinu. Prilikom rješavanja mnogo više jednostavne jednačine morate početi ne od prvog, već od drugog ( Primjer. 2), treći ( Primjer. 1, 3) pa čak i od pete faze, kao u primjeru 5.

Primjer 5. Riješite jednačinu 2x = 1/4.

Pronađite nepoznato x = 1/4: 2,
x = 1/8
.

Pogledajmo rješavanje nekih linearnih jednadžbi koje se nalaze na glavnom državnom ispitu.

Primjer 6. Riješite jednačinu 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Odgovor: - 0,125

Primjer 7. Riješite jednačinu – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Odgovor: 2.3

Primjer 8. Riješite jednačinu

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Primjer 9. Pronađite f(6) ako je f (x + 2) = 3 7

Rješenje

Pošto moramo pronaći f(6), a znamo f (x + 2),
onda je x + 2 = 6.

Rješavamo linearnu jednačinu x + 2 = 6,
dobijamo x = 6 – 2, x = 4.

Ako je x = 4 onda
f(6) = 3 7-4 = 3 3 = 27

Odgovor: 27.

Ako i dalje imate pitanja ili želite detaljnije razumjeti rješavanje jednačina, prijavite se za moje lekcije u RASPORU. Biće mi drago da vam pomognem!

TutorOnline također preporučuje gledanje nove video lekcije naše učiteljice Olge Aleksandrovne, koja će vam pomoći da razumijete i linearne jednadžbe i druge.

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.

Kvadratne jednačine se izučavaju u 8. razredu, tako da ovdje nema ništa komplikovano. Sposobnost njihovog rješavanja je apsolutno neophodna.

Kvadratna jednačina je jednačina oblika ax 2 + bx + c = 0, gdje su koeficijenti a, b i c proizvoljni brojevi, a a ≠ 0.

Prije proučavanja specifičnih metoda rješenja, imajte na umu da se sve kvadratne jednadžbe mogu podijeliti u tri klase:

  1. Nemaju korijene;
  2. Imati tačno jedan korijen;
  3. Uzmi dva razni koreni.

Ovo je bitna razlika kvadratne jednadžbe od linearnih, gdje korijen uvijek postoji i jedinstven je. Kako odrediti koliko korijena ima jednačina? Postoji divna stvar za ovo - diskriminatorno.

Diskriminantno

Neka je data kvadratna jednačina ax 2 + bx + c = 0. Tada je diskriminanta jednostavno broj D = b 2 − 4ac.

Ovu formulu morate znati napamet. Odakle dolazi sada nije važno. Još jedna stvar je važna: po znaku diskriminanta možete odrediti koliko korijena ima kvadratna jednadžba. naime:

  1. Ako je D< 0, корней нет;
  2. Ako je D = 0, postoji tačno jedan korijen;
  3. Ako je D > 0, postojaće dva korena.

Imajte na umu: diskriminant označava broj korijena, a ne njihove znakove, kako iz nekog razloga mnogi vjeruju. Pogledajte primjere i sve ćete sami razumjeti:

Zadatak. Koliko korijena imaju kvadratne jednadžbe:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Napišimo koeficijente za prvu jednačinu i pronađemo diskriminanta:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Dakle, diskriminant je pozitivan, tako da jednačina ima dva različita korijena. Drugu jednačinu analiziramo na sličan način:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant je negativan, nema korijena. Zadnja preostala jednačina je:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminant je nula - korijen će biti jedan.

Imajte na umu da su koeficijenti zapisani za svaku jednačinu. Da, dugo je, da, zamorno je, ali nećete miješati šanse i praviti glupe greške. Odaberite za sebe: brzinu ili kvalitet.

Usput, ako se snađete, nakon nekog vremena nećete morati zapisivati ​​sve koeficijente. Takve operacije ćete izvoditi u svojoj glavi. Većina ljudi to počne raditi negdje nakon 50-70 riješenih jednačina - općenito, ne toliko.

Korijeni kvadratne jednadžbe

Sada pređimo na samo rješenje. Ako je diskriminanta D > 0, korijeni se mogu pronaći pomoću formula:

Osnovna formula za korijene kvadratne jednadžbe

Kada je D = 0, možete koristiti bilo koju od ovih formula - dobit ćete isti broj, što će biti odgovor. Konačno, ako D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prva jednadžba:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ jednadžba ima dva korijena. Hajde da ih pronađemo:

Druga jednadžba:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ jednadžba opet ima dva korijena. Hajde da ih nađemo

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(poravnati)\]

Konačno, treća jednačina:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ jednačina ima jedan korijen. Može se koristiti bilo koja formula. Na primjer, prvi:

Kao što možete vidjeti iz primjera, sve je vrlo jednostavno. Ako znate formule i znate računati, neće biti problema. Najčešće se greške javljaju prilikom zamjene u formulu negativni koeficijenti. Ovdje će opet pomoći gore opisana tehnika: doslovno pogledajte formulu, zapišite svaki korak - i vrlo brzo ćete se riješiti grešaka.

Nepotpune kvadratne jednadžbe

Dešava se da se kvadratna jednačina malo razlikuje od onoga što je dato u definiciji. na primjer:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Lako je primijetiti da ovim jednačinama nedostaje jedan od pojmova. Takve kvadratne jednadžbe još je lakše riješiti od standardnih: ne zahtijevaju čak ni izračunavanje diskriminanta. Dakle, hajde da predstavimo novi koncept:

Jednačina ax 2 + bx + c = 0 naziva se nepotpuna kvadratna jednačina ako je b = 0 ili c = 0, tj. koeficijent varijable x ili slobodnog elementa jednak je nuli.

Naravno, moguć je vrlo težak slučaj kada su oba ova koeficijenta jednaka nuli: b = c = 0. U ovom slučaju, jednačina ima oblik ax 2 = 0. Očigledno, takva jednačina ima jedan korijen: x = 0.

Razmotrimo preostale slučajeve. Neka je b = 0, onda ćemo dobiti nepotpunu kvadratnu jednačinu oblika ax 2 + c = 0. Transformirajmo je malo:

Budući da aritmetički kvadratni korijen postoji samo od nenegativnog broja, posljednja jednakost ima smisla samo za (−c /a) ≥ 0. Zaključak:

  1. Ako je u nepotpunoj kvadratnoj jednadžbi oblika ax 2 + c = 0 nejednakost (−c /a) ≥ 0 zadovoljena, postojaće dva korena. Formula je data gore;
  2. Ako (−c /a)< 0, корней нет.

Kao što vidite, diskriminant nije bio potreban – u nepotpunim kvadratnim jednačinama uopšte nema složenih proračuna. Zapravo, nije potrebno čak ni zapamtiti nejednakost (−c /a) ≥ 0. Dovoljno je izraziti vrijednost x 2 i vidjeti šta se nalazi na drugoj strani znaka jednakosti. Ako postoji pozitivan broj, bit će dva korijena. Ako je negativan, korijena uopće neće biti.

Pogledajmo sada jednačine oblika ax 2 + bx = 0, u kojima je slobodni element jednak nuli. Ovdje je sve jednostavno: uvijek će postojati dva korijena. Dovoljno je faktorisati polinom:

Izuzimanje zajedničkog faktora iz zagrada

Proizvod je nula kada je barem jedan od faktora nula. Odatle potiču korijeni. U zaključku, pogledajmo nekoliko od ovih jednadžbi:

Zadatak. Riješite kvadratne jednadžbe:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nema korijena, jer kvadrat ne može biti jednak negativnom broju.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

U ovom videu ćemo analizirati čitav niz linearnih jednadžbi koje se rješavaju istim algoritmom - zato se nazivaju najjednostavnijim.

Prvo, hajde da definišemo: šta je linearna jednačina i koja se zove najjednostavnija?

Linearna jednačina je ona u kojoj postoji samo jedna varijabla i to samo do prvog stepena.

Najjednostavnija jednadžba znači konstrukciju:

Sve ostale linearne jednadžbe se svode na najjednostavnije korištenjem algoritma:

  1. Proširite zagrade, ako ih ima;
  2. Premjestite termine koji sadrže varijablu na jednu stranu znaka jednakosti, a pojmove bez varijable na drugu;
  3. Navedite slične pojmove lijevo i desno od znaka jednakosti;
  4. Podijelite rezultirajuću jednačinu sa koeficijentom varijable $x$.

Naravno, ovaj algoritam ne pomaže uvijek. Činjenica je da se ponekad nakon svih ovih mahinacija koeficijent varijable $x$ pokaže jednakim nuli. U ovom slučaju su moguće dvije opcije:

  1. Jednačina uopće nema rješenja. Na primjer, kada ispadne nešto poput $0\cdot x=8$, tj. na lijevoj strani je nula, a na desnoj strani je broj koji nije nula. U videu ispod ćemo pogledati nekoliko razloga zašto je ova situacija moguća.
  2. Rješenje su svi brojevi. Jedini slučaj kada je to moguće je kada je jednačina svedena na konstrukciju $0\cdot x=0$. Sasvim je logično da bez obzira koji $x$ zamijenimo, ipak će se ispostaviti da je "nula jednaka nuli", tj. ispravna brojčana jednakost.

Sada da vidimo kako sve ovo funkcionira na primjerima iz stvarnog života.

Primjeri rješavanja jednačina

Danas imamo posla sa linearnim jednadžbama, i to samo onim najjednostavnijim. Uopšteno govoreći, linearna jednačina označava svaku jednakost koja sadrži tačno jednu varijablu, a ide samo do prvog stepena.

Takve konstrukcije se rješavaju na približno isti način:

  1. Prije svega, trebate proširiti zagrade, ako ih ima (kao u našem posljednjem primjeru);
  2. Zatim kombinirajte slično
  3. Na kraju, izolujte varijablu, tj. premjestite sve što je povezano s promjenljivom – termine u kojima je sadržana – na jednu stranu, a sve što ostaje bez nje premjestite na drugu stranu.

Zatim, po pravilu, trebate donijeti slične sa svake strane rezultirajuće jednakosti, a nakon toga ostaje samo podijeliti sa koeficijentom “x” i dobićemo konačni odgovor.

U teoriji ovo izgleda lijepo i jednostavno, ali u praksi čak i iskusni srednjoškolci mogu napraviti uvredljive greške u prilično jednostavnim linearnim jednačinama. Obično se prave greške prilikom otvaranja zagrada ili prilikom izračunavanja „plusova“ i „minusa“.

Osim toga, dešava se da linearna jednadžba uopće nema rješenja, ili da je rješenje cijela brojevna prava, tj. bilo koji broj. Razmotrićemo ove suptilnosti u današnjoj lekciji. Ali počet ćemo, kao što ste već shvatili, od samog jednostavni zadaci.

Šema za rješavanje jednostavnih linearnih jednadžbi

Prvo, dozvolite mi da još jednom napišem cijelu shemu za rješavanje najjednostavnijih linearnih jednadžbi:

  1. Proširite zagrade, ako ih ima.
  2. Izolujemo varijable, tj. Sve što sadrži "X" pomeramo na jednu stranu, a sve bez "X" na drugu.
  3. Predstavljamo slične termine.
  4. Sve dijelimo koeficijentom “x”.

Naravno, ova šema ne funkcionira uvijek u njoj postoje određene suptilnosti i trikovi, a sada ćemo ih upoznati.

Rješavanje stvarnih primjera jednostavnih linearnih jednadžbi

Zadatak br. 1

Prvi korak zahtijeva da otvorimo zagrade. Ali oni nisu u ovom primjeru, pa preskačemo ovaj korak. U drugom koraku moramo izolirati varijable. Imajte na umu: mi pričamo samo o pojedinačnim terminima. Hajde da to zapišemo:

Slične pojmove predstavljamo lijevo i desno, ali to je već urađeno ovdje. Stoga prelazimo na četvrti korak: podijelite sa koeficijentom:

\[\frac(6x)(6)=-\frac(72)(6)\]

Tako da smo dobili odgovor.

Zadatak br. 2

U ovom problemu možemo vidjeti zagrade, pa ih proširimo:

I lijevo i desno vidimo približno isti dizajn, ali postupimo po algoritmu, tj. razdvajanje varijabli:

Evo nekoliko sličnih:

Iz kojih korijena ovo funkcionira? Odgovor: za bilo koje. Stoga možemo napisati da je $x$ bilo koji broj.

Zadatak br. 3

Treća linearna jednačina je zanimljivija:

\[\lijevo(6-x \desno)+\lijevo(12+x \desno)-\lijevo(3-2x \desno)=15\]

Ovdje postoji nekoliko zagrada, ali se ne množe ničim, već im prethode različiti znakovi. Hajde da ih raščlanimo:

Izvodimo drugi nama već poznat korak:

\[-x+x+2x=15-6-12+3\]

Hajde da izračunamo:

Izvodimo posljednji korak - podijelimo sve sa koeficijentom “x”:

\[\frac(2x)(x)=\frac(0)(2)\]

Stvari koje treba zapamtiti prilikom rješavanja linearnih jednačina

Ako zanemarimo prejednostavne zadatke, želio bih reći sljedeće:

  • Kao što sam rekao gore, nema svaka linearna jednačina rješenje – ponekad jednostavno nema korijena;
  • Čak i ako postoje korijeni, među njima može biti nula - u tome nema ništa loše.

Nula je isti broj kao i ostali, ne treba ga ni na koji način diskriminirati ili pretpostaviti da ako dobijete nulu, onda ste učinili nešto pogrešno.

Druga karakteristika je vezana za otvaranje zagrada. Imajte na umu: kada je ispred njih "minus", uklanjamo ga, ali u zagradama mijenjamo znakove u suprotno. A onda ga možemo otvoriti pomoću standardnih algoritama: dobićemo ono što smo vidjeli u gornjim proračunima.

Razumijevanje ove jednostavne činjenice pomoći će vam da izbjegnete glupe i štetne greške u srednjoj školi, kada se takve stvari uzimaju zdravo za gotovo.

Rješavanje složenih linearnih jednadžbi

Idemo dalje složene jednačine. Sada će konstrukcije postati složenije i prilikom izvođenja različitih transformacija pojavit će se kvadratna funkcija. Međutim, toga se ne trebamo bojati, jer ako, prema autorovom planu, rješavamo linearnu jednadžbu, onda će se tijekom procesa transformacije sigurno poništiti svi monomi koji sadrže kvadratnu funkciju.

Primjer br. 1

Očigledno, prvi korak je otvaranje zagrada. Uradimo ovo veoma pažljivo:

Sada pogledajmo privatnost:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Evo nekih sličnih:

Očigledno je da zadata jednačina Rešenja nema, pa ćemo u odgovoru napisati ovo:

\[\varnothing\]

ili nema korena.

Primjer br. 2

Izvodimo iste radnje. prvi korak:

Pomerimo sve sa promenljivom ulevo, a bez nje - udesno:

Evo nekih sličnih:

Očigledno, ova linearna jednadžba nema rješenja, pa ćemo je napisati na sljedeći način:

\[\varnothing\],

ili nema korena.

Nijanse rješenja

Obje jednačine su potpuno riješene. Koristeći ova dva izraza kao primjer, još jednom smo se uvjerili da čak ni u najjednostavnijim linearnim jednadžbama možda sve nije tako jednostavno: može postojati ili jedan, ili nijedan, ili beskonačno mnogo korijena. U našem slučaju, razmatrali smo dvije jednačine, obje jednostavno nemaju korijen.

Ali želim da vam skrenem pažnju na još jednu činjenicu: kako raditi sa zagradama i kako ih otvoriti ako je ispred njih znak minus. Razmotrite ovaj izraz:

Prije otvaranja, morate sve pomnožiti sa "X". Napomena: množe se svaki pojedinačni termin. Unutra se nalaze dva pojma - odnosno dva člana i pomnoženi.

I tek nakon što se ove naizgled elementarne, ali vrlo važne i opasne transformacije završe, možete otvoriti zagradu sa stanovišta činjenice da iza nje stoji znak minus. Da, da: tek sada, kada su transformacije završene, sjetimo se da ispred zagrada stoji znak minus, što znači da sve ispod jednostavno mijenja predznake. Istovremeno, sami zagrade nestaju i, što je najvažnije, nestaje i prednji "minus".

Isto radimo i sa drugom jednačinom:

Nije slučajno što obraćam pažnju na ove male, naizgled beznačajne činjenice. Zato što je rješavanje jednačina uvijek niz elementarnih transformacija, gdje je nemogućnost da se jasno i kompetentno izvede jednostavnim koracima dovodi do toga da mi dolaze srednjoškolci i opet uče da rješavaju tako jednostavne jednačine.

Naravno, doći će dan kada ćete ove vještine izbrusiti do automatizma. Nećete više morati da izvodite toliko transformacija svaki put; Ali dok tek učite, svaku radnju morate napisati posebno.

Rješavanje još složenijih linearnih jednačina

Ovo što ćemo sada riješiti teško se može nazvati najjednostavnijim zadatkom, ali smisao ostaje isti.

Zadatak br. 1

\[\left(7x+1 \desno)\left(3x-1 \right)-21((x)^(2))=3\]

Pomnožimo sve elemente u prvom dijelu:

Učinimo malo privatnosti:

Evo nekih sličnih:

Završimo zadnji korak:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Evo našeg konačnog odgovora. I uprkos činjenici da smo u procesu rješavanja imali koeficijente s kvadratnom funkcijom, oni su se međusobno poništavali, što jednačinu čini linearnom, a ne kvadratnom.

Zadatak br. 2

\[\lijevo(1-4x \desno)\lijevo(1-3x \desno)=6x\lijevo(2x-1 \desno)\]

Pažljivo izvršimo prvi korak: pomnožimo svaki element iz prve zagrade sa svakim elementom iz druge. Nakon transformacije trebalo bi postojati ukupno četiri nova pojma:

Sada pažljivo izvršimo množenje u svakom članu:

Pomerimo termine sa "X" ulevo, a one bez - udesno:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Evo sličnih pojmova:

Još jednom smo dobili konačan odgovor.

Nijanse rješenja

Najvažnija napomena o ove dvije jednačine je sljedeća: čim počnemo množiti zagrade koje sadrže više od jednog člana, to se radi po sljedećem pravilu: uzimamo prvi član iz prve i množimo sa svakim elementom iz drugi; zatim uzimamo drugi element iz prvog i na sličan način množimo sa svakim elementom iz drugog. Kao rezultat toga, imaćemo četiri mandata.

O algebarskom zbiru

Ovim posljednjim primjerom želio bih podsjetiti studente šta je algebarski zbir. U klasičnoj matematici, pod $1-7$ mislimo na jednostavnu konstrukciju: oduzeti sedam od jednog. U algebri pod ovim podrazumijevamo sljedeće: broju “jedan” dodajemo još jedan broj, odnosno “minus sedam”. Po tome se algebarski zbir razlikuje od običnog aritmetičkog zbira.

Čim, prilikom izvođenja svih transformacija, svakog zbrajanja i množenja, počnete vidjeti konstrukcije slične gore opisanim, jednostavno nećete imati problema u algebri kada radite s polinomima i jednadžbama.

Na kraju, pogledajmo još nekoliko primjera koji će biti još složeniji od ovih koje smo upravo pogledali, a da bismo ih riješili morat ćemo malo proširiti naš standardni algoritam.

Rješavanje jednadžbi s razlomcima

Da bismo riješili takve zadatke, morat ćemo dodati još jedan korak našem algoritmu. Ali prvo, da vas podsjetim na naš algoritam:

  1. Otvorite zagrade.
  2. Odvojene varijable.
  3. Donesite slične.
  4. Podijelite omjerom.

Nažalost, ovaj divni algoritam, uz svu svoju efikasnost, ispada da nije sasvim prikladan kada imamo razlomke ispred sebe. I u onome što ćemo vidjeti u nastavku, imamo razlomak i na lijevoj i na desnoj strani u obje jednačine.

Kako raditi u ovom slučaju? Da, vrlo je jednostavno! Da biste to učinili, morate dodati još jedan korak u algoritam, koji se može učiniti i prije i nakon prve radnje, odnosno uklanjanje razlomaka. Dakle, algoritam će biti sljedeći:

  1. Riješite se razlomaka.
  2. Otvorite zagrade.
  3. Odvojene varijable.
  4. Donesite slične.
  5. Podijelite omjerom.

Šta znači "osloboditi se razlomaka"? I zašto se to može učiniti i nakon i prije prvog standardnog koraka? Zapravo, u našem slučaju svi razlomci su brojčani u nazivniku, tj. Svugdje je imenilac samo broj. Stoga, ako pomnožimo obje strane jednadžbe ovim brojem, riješit ćemo se razlomaka.

Primjer br. 1

\[\frac(\left(2x+1 \desno)\left(2x-3 \right))(4)=((x)^(2))-1\]

Riješimo se razlomaka u ovoj jednadžbi:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Imajte na umu: sve se množi sa "četiri" jednom, tj. samo zato što imate dvije zagrade ne znači da morate svaku pomnožiti sa "četiri". Hajde da zapišemo:

\[\left(2x+1 \desno)\left(2x-3 \right)=\left(((x)^(2))-1 \desno)\cdot 4\]

Sada da proširimo:

Izdvajamo varijablu:

Vršimo redukciju sličnih pojmova:

\[-4x=-1\lijevo| :\lijevo(-4 \desno) \desno.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Dobili smo konačno rješenje, idemo na drugu jednačinu.

Primjer br. 2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Ovdje izvodimo sve iste radnje:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Problem je riješen.

To je, zapravo, sve što sam vam danas htio reći.

Ključne tačke

Ključni nalazi su:

  • Znati algoritam za rješavanje linearnih jednačina.
  • Mogućnost otvaranja zagrada.
  • Ne brini ako vidiš kvadratne funkcije, najvjerovatnije će se u procesu daljih transformacija smanjiti.
  • Postoje tri vrste korijena u linearnim jednadžbama, čak i one najjednostavnije: jedan korijen, cijela brojevna prava je korijen i nema korijena.

Nadam se da će vam ova lekcija pomoći da savladate jednostavnu, ali vrlo važnu temu za dalje razumijevanje sve matematike. Ako nešto nije jasno, idite na stranicu i riješite primjere prikazane tamo. Ostanite sa nama, očekuje vas još mnogo zanimljivosti!


Hajde da analiziramo dve vrste rešenja sistema jednačina:

1. Rješavanje sistema metodom zamjene.
2. Rješavanje sistema sabiranjem (oduzimanjem) sistemskih jednačina po članu.

Da bi se riješio sistem jednačina metodom supstitucije morate slijediti jednostavan algoritam:
1. Express. Iz bilo koje jednačine izražavamo jednu varijablu.
2. Zamjena. Dobivenu vrijednost zamjenjujemo u drugu jednačinu umjesto izražene varijable.
3. Riješi rezultirajuću jednačinu s jednom promjenljivom. Pronalazimo rješenje za sistem.

Odlučiti sistem metodom sabiranja (oduzimanja) pojam treba:
1. Odaberite varijablu za koju ćemo napraviti identične koeficijente.
2. Sabiramo ili oduzimamo jednačine, što rezultira jednačinom s jednom promjenljivom.
3. Riješite rezultirajuću linearnu jednačinu. Pronalazimo rješenje za sistem.

Rješenje sistema su tačke preseka grafova funkcija.

Razmotrimo detaljno rješenja sistema na primjerima.

Primjer #1:

Rešimo metodom zamene

Rješavanje sistema jednačina metodom zamjene

2x+5y=1 (1 jednadžba)
x-10y=3 (2. jednadžba)

1. Express
Vidi se da u drugoj jednačini postoji varijabla x sa koeficijentom 1, što znači da je varijablu x najlakše izraziti iz druge jednačine.
x=3+10y

2. Nakon što smo to izrazili, zamjenjujemo 3+10y u prvu jednačinu umjesto varijable x.
2(3+10y)+5y=1

3. Riješi rezultirajuću jednačinu s jednom promjenljivom.
2(3+10y)+5y=1 (otvorite zagrade)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Rješenje sistema jednačina su točke sjecišta grafova, stoga trebamo pronaći x i y, jer se tačka sjecišta sastoji od x i y, u prvoj tački gdje smo to izrazili, tu zamjenjujemo y .
x=3+10y
x=3+10*(-0,2)=1

Uobičajeno je da se zapisuju tačke na prvom mestu pišemo promenljivu x, a na drugom mestu promenljivu y.
Odgovor: (1; -0,2)

Primjer #2:

Rešimo metodom sabiranja (oduzimanja) po član.

Rješavanje sistema jednačina metodom sabiranja

3x-2y=1 (1 jednadžba)
2x-3y=-10 (2. jednadžba)

1. Biramo varijablu, recimo da biramo x. U prvoj jednačini varijabla x ima koeficijent 3, u drugoj - 2. Moramo učiniti koeficijente istim, za to imamo pravo pomnožiti jednačine ili podijeliti s bilo kojim brojem. Prvu jednačinu pomnožimo sa 2, a drugu sa 3 i dobijemo ukupan koeficijent 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. Oduzmite drugu od prve jednačine da biste se riješili varijable x. Riješite linearnu jednačinu.
__6x-4y=2

5y=32 | :5
y=6.4

3. Pronađite x. Pronađeno y zamjenjujemo u bilo koju od jednadžbi, recimo u prvu jednačinu.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4.6

Tačka presjeka će biti x=4,6; y=6.4
Odgovor: (4,6; 6,4)

Želite li se besplatno pripremati za ispite? Tutor online besplatno. Bez šale.



Šta još čitati