Астрофизика где учиться. Кто такой астрофизик. Типичный рабочий день

Астрономия — это наука, которая изучает небесные тела, их движение, строение, а также системы, образованные ими. Это древнейшая область знания: истоки астрономии теряются в глубине веков.

Можно сказать, что она эволюционировала вместе с человечеством. И сегодня астрономия не стоит на месте. Пользуясь новейшими технологиями, ученые постоянно уточняют и дополняют уже сложившиеся теории. Самые громкие открытия последних лет часто бывали связаны с теми явлениями, что изучают астрофизики. На полную мощность используя достижения в области техники, астрономы неизбежно сталкиваются с ограниченностью человеческого разума. Астрофизика — раздел астрономии, пожалуй, чаще других сталкивающийся с фактами, которые пока невозможно объяснить. Ученые, работающие под ее знаменем, пытаясь найти ответы на все более сложные вопросы, тем самым стимулируют технический прогресс. О том, что изучают астрофизики, что им уже удалось узнать и какие загадки Вселенная им предлагает сегодня, и пойдет речь ниже.

Особенности

Астрофизика занимается определением физических характеристик и их взаимодействия. В своих теориях она опирается на знания о законах природы, накопленные наукой в процессе изучения свойств материи на Земле.
Ученые-астрофизики сталкиваются с существенными ограничениями в своей работе. В отличие от коллег, изучающих микромир или макрообъекты в условиях Земли, они не могут проводить эксперименты. Многие из сил, действующих в космосе, проявляют себя лишь на огромном расстоянии или при наличии гигантских по массе и объему объектов. В лаборатории такое взаимодействие не изучишь, поскольку невозможно создать необходимые условия. Общая астрофизика в основном имеет дело с результатами пассивного наблюдения.

В таких условиях трудно себе представить получение данных об объектах. Непосредственного измерения нужных параметров в силу невозможности экспериментов в этом разделе астрономии не существует. В таком случае что изучают астрофизики и на чем основывают свои выводы? Главный источник информации для ученых в подобных условиях — анализ электромагнитных волн, которые излучают небесные тела.

С чего все начиналось

Астрономия — это наука, которая изучает небесные тела с незапамятных времен, однако такой раздел, как астрофизика, был в ней далеко не всегда. Фактически свое становление он начал в 1859 году, когда Г. Кирхгоф и Р. Бунзен по завершении серии экспериментов установили, что любой химический элемент обладает уникальным линейчатым спектром. Это означало, что по спектру небесного тела можно судить о его химическом составе. Так зародился спектральный анализ, а вместе с ним появилась и астрофизика.

Значимость

В 1868 году только что созданный метод сделал возможным обнаружение нового химического элемента - гелия. Его открыли во время наблюдения полного солнечного затмения и изучения хромосферы светила.

Современная астрофизика также во многом базируется на данных Усовершенствованная технология позволяет получать сведения практически обо всех характеристиках небесных тел, а также межзвездного пространства: температуре, составе, поведении атомов, напряжении магнитных полей и так далее.

Невидимое излучение

Существенно расширило возможности астрофизики открытие радиоизлучения. Его регистрация позволила изучать холодный газ, наполняющий межзвездное пространство и испускающий невидимый для глаза свет, а также процессы, протекающие в далеких пульсарах и нейтронных звездах. Огромное значение для всей астрономии имело открытие ставшего подтверждением складывавшейся в это время теории большого взрыва.

Космическая эра подарила астрофизикам новые возможности. Стали доступными ультрафиолетовое, рентгеновское и гамма-излучение, путь к Земле которым преграждает атмосфера. Телескопы, созданные с учетом новых открытий, позволили обнаружить горячий газ в скоплениях галактик, нейтронных звезд, некоторые характеристики черных дыр.

Проблемы астрофизики

Современная наука шагнула далеко вперед по сравнению с тем состоянием, в котором она пребывала в конце 19 века. Сегодня астрофизики пользуются всеми новейшими достижениями в области регистрации электромагнитного излучения и получения на их основе данных об удаленных объектах. Однако нельзя сказать, что этот раздел астрономии абсолютно беспрепятственно движется по пути изучения Вселенной. Условия, складывающиеся в далеком космосе, подчас настолько трудны для регистрации и понимания, что интерпретация полученных данных о тех или иных объектах затруднительна.

В окрестностях черной дыры, недрах нейтронных звезд и их магнитных полях могут проявляться новые физические свойства материи. Невозможность даже приблизительно воспроизвести экстремальные или предельные условия, в которых происходят подобные космические процессы, формирует основные сложности астрофизики.

Модель Вселенной

Одна из важнейших задач современной астрономии — понять, как развивается необъятный космос. На сегодняшний день существует две основные версии: открытая и закрытая Вселенная. Первая подразумевает постоянное и неограниченное расширение. В этой модели расстояние между галактиками только увеличивается, и спустя какое-то время космос станет безжизненной пустыней с редкими островками твердой материи. Другой вариант предполагает, что на смену расширению, которое для большинства является бесспорным фактом, придет фаза сжатия Вселенной. Однозначного ответа на вопрос о том, какая теория верна, пока нет. Более того, появляются открытия, значительно усложняющие понимание будущего Вселенной и вносящие определенный хаос в, казалось бы, стройную картину. К ним относится, например, обнаружение и энергии.

Черные дыры, гамма-всплески

Среди всего того, что изучают астрофизики, есть ряд объектов с особым налетом таинственности. Они также относятся к основным проблемам этого раздела астрономии. В их число входят черные дыры, многие физические процессы в пространстве которых совершенно не изучены, и гамма-всплески. Последние представляют собой выброс огромного количества энергии, импульсы гамма-излучения. Природа их тоже до конца не ясна.

Понимание подобных объектов и явлений может существенно изменить наше представление об устройстве Вселенной и законах космоса. Именно постоянное соприкосновение с тайнами мироздания и делает астрофизику передним краем науки, одновременно высвечивающей ограниченность современных знаний и стимулирующей дальнейшее их развитие. Можно сказать, что этот раздел астрономии стал своеобразным маркером прогресса: каждое открытие знаменует собой победу человеческого разума над еще одной тайной.

Астроном - учёный, изучающий небесные объекты, такие как звёзды, планеты и их спутники, кометы и прочее.

От греч. astronomía, от астро и nómos - закон. Профессия подходит тем, кого интересует физика, математика и химия (см. выбор профессии по интересу к школьным предметам).

Астроном - учёный, изучающий небесные объекты: звёзды, планеты и их спутники, кометы и пр.

Особенности профессии

Астрономия - наука о строении и развитии космических тел, их систем и Вселенной.
Астроном - очень редкая профессия.
Астроном-теоретик занимается теоретической астрономией, космологией (наукой о рождении и развитии Вселенной и объектов в ней). Он обобщает данные полученных в ходе наблюдений.
Астрономы-наблюдатели разрабатывают методику наблюдений, добывают фаты, которые затем становятся основой для научных выводов и гипотез.
Конкретная работа астронома зависит от специализации. Существует множество направлений: космология, небесная механика и звездная динамика, астрофизика, радиоастрономия, физика галактик, звезд, астрономическое приборостроение.
Однако астрономия не получит развития без постоянного развития технологий. Разработкой новых наблюдательных приборов занимаются инженеры (астрономы-«аппаратурщики»).

Астрономия тесно связана с другими точными науками, прежде всего - с математикой, физикой и некоторыми разделами механики, используя достижения этих наук и, в свою очередь, оказывая влияние на их развитие.
Карьерный путь российского астронома такой же, как и в любой другой сфере науки: обучение в вузе, аспирантура, кандидатская диссертация, защита, научная работа, докторская и т. д. С получением нового научного звания растет и квалификационный разряд, от которого в первую очередь зависит зарплата.

Помимо непосредственно астрономии существуют прикладные специальности, прямо или косвенно связанные с этой наукой (Космос и информационные технологии, Астрономогеодезия, Исследование природных ресурсов аэрокосмическими средствами, Космос и информационные технологии).

Рабочее место

Работают российские астрономы в Государственном астрономическом институте им. П.К. Штернберга (ГАИШ) МГУ им. М.В. Ломоносова,
Институте космических исследований,
Институте астрономии и Физическом институте АН России,
Главной (Пулковской) астрономической обсерватории,
Специальной астрофизической обсерватории АН России на Северном Кавказе.

Где учат

Астрономов готовят физические и механико-математические факультеты ведущих университетов страны: Московского, Санкт-петербургского, Казанского, Екатеринбургского.
Однако универсальных астрономов в Москве готовят только на отделении астрономии физического факультета МГУ им. М.В. Ломоносова.

– Чем занимается Государственный астрономический институт имени П.К. Штернберга МГУ?
– Это один из главных астрофизических институтов в России. В нем занимаются исследованиями в области астрономии и астрофизики, начиная от изучения планет, астрометрии (раздела астрономии, главной задачей которого является изучение видимых положений и движений небесных тел) и небесной механики и заканчивая астрофизикой высоких энергий, релятивистской астрофизикой (изучающей на основе общей теории относительности свойства сверхплотных космических тел - нейтронных звезд и черных дыр - прим. сайта ) и космологией.

– Чем астрономия отличается от астрофизики?
– Это смежные, взаимопроникающие и порой даже взаимозамещающие понятия. В быту астрономия и астрофизика вообще часто употребляются как синонимы. Астрофизика - это часть физики, занимающаяся физикой явлений, происходящих во Вселенной. Классическая астрономия - скорее, наука об интерпретации тех наблюдений за небесными телами, которые у нас есть. Эта наука использует свои специфические методы: измерение блеска звезд, измерение положений, скоростей, координат.
Например, существует такая дисциплина, как звездная астрономия, которая изучает структуру и кинематику различных звездных систем. К примеру - нашей Галактики. Но вот как образовалась Галактика, и как она эволюционирует - это уже вопросы физики галактик, которая, впрочем, опирается на знания, полученные звездной астрономией.

– Как астрофизики исследуют различные объекты и явления?
– Наш основной метод познания Вселенной - наблюдение. А наблюдать за небесными телами, конечно, удобнее всего с помощью телескопов. Наши сотрудники используют наземные телескопы, расположенные по всему миру, а также орбитальные обсерватории. Например, одно из крупнейших устройств в мире (и крупнейшее - в России) находится на Северном Кавказе. А недавно у Института появился 2,5-метровый телескоп в Кисловодске.

– Как астрофизики узнают, на что именно нужно смотреть?
– Ученых-астрофизиков можно условно разделить на теоретиков и наблюдателей. Теоретики - это те, кто знает, куда именно нужно смотреть и почему. А наблюдатели знают, как нужно смотреть и как из полученного сигнала вытащить осмысленные физические знания.
Для проведения наблюдений на любом сравнительно большом телескопе от теоретика нужна хорошо написанная заявка. Она рассматривается специальной комиссией, состоящей из других астрофизиков-теоретиков и наблюдателей. Если заявка признается хорошей, то ученый, как говорят, получает «время на телескопе», а затем - данные. При этом в самих наблюдениях заявитель чаще всего не участвует. Потому что, это, во-первых, как правило, далеко. А во-вторых, процесс наблюдений с технической точки зрения достаточно сложен и занимаются им отдельные специалисты. Просто так «порулить телескопом» в большой обсерватории никто не даст.

– Для чего нужны эти исследования? Как полученные результаты можно применить на практике?
– Мы занимаемся фундаментальной наукой - познаем устройство окружающего нас мира. Однако впоследствии из фундаментальной науки вырастает наука прикладная. Например, сегодня теория относительности помогает нам с высокой точностью отслеживать перемещение вызванной машины такси благодаря навигационной системе GPS.

– Чем занимаетесь именно вы?
– По большей части я занимаюсь исследованиями нейтронных звезд. Эти звезды - одна из возможных финальных стадий эволюции обычных звезд - после того как массивная звезда исчерпывает свое термоядерное топливо, внутреннее давление уже не может сдерживать силы гравитации, ядро звезды коллапсирует, и образуется быстро вращающийся плотный объект с радиусом 12 км и сильным магнитным полем. Российский астрофизик Сергей Попов, например, такие звезды называет суперобъектами. Я считаю, что это весьма меткое название, ведь, действительно, у них все «супер» - супербольшие плотности, супербольшие магнитные поля, супербольшие гравитационные поля.
Также я участвую в создании устройств и математического обеспечения для космических аппаратов - некоторые такие устройства разрабатываются и силами нашей лаборатории. Кроме того, я стараюсь не только заниматься астрофизикой, но и популяризировать эту дисциплину. Например, сейчас в павильоне ВДНХ «Космос» готовят к открытию большой музейный центр, который будет посвящен авиации и космонавтике. Я занимаюсь разделом, посвященным астрономии и астрофизике.

– Из чего состоит рабочий день астрофизика?
– Астрофизик строит модели различных физических явлений. Этот специалист собирает данные наблюдений - изображения с телескопов, графики, колонки цифр, обрабатывает их и анализирует, используя методы математического и статистического анализа. Затем, глядя на получившийся результат, астрофизик предлагает гипотезы, строит физические модели (на языке уравнений, например), думает, как их можно проверить новыми наблюдениями, инициирует эти наблюдения, и далее круг замыкается.
Например, после интервью я пойду к себе в лабораторию и примусь писать программу, воплощающую одну из физических моделей вращения твердого тела в космосе. Я буду сидеть за компьютером и программировать, компилировать, запускать, искать ошибки, опять компилировать, опять запускать, и так много-много раз.

– Как вы стали астрофизиком?
– Я окончил Лицей информационных технологий № 1537 , получив специальность программиста. Предполагалось, что я и дальше продолжу образование в области компьютерных наук и программирования, ведь у меня хорошо шли эти дисциплины. Однако в 11-м классе я огорошил всех, заявив, что хочу заниматься астрономией, а не программированием. Разумеется, учителя спрашивали, почему я так решил. Я отвечал, что не хочу всю жизнь сидеть перед монитором и писать программы. И вот я астрофизик, и я днями сижу перед монитором и пишу программы.

– Какое высшее образование нужно, чтобы стать астрофизиком?
– Чтобы стать астрофизиком, можно пойти учиться на астрономическое отделение физического факультета (именно там учился я сам), на астрономическое отделение математико-механического факультета или на кафедру астрономии в . Также кафедра астрономии, геодезии и мониторинга окружающей среды есть в .
С другой стороны, можно получить не корочку астронома, а хорошее физическое образование, например, в , а затем пойти в аспирантуру в астрофизическую группу.

– Как выпускнику без опыта работы построить карьеру в науке?
– Для человека, который только-только начинает работать в науке (то есть еще во время учебы в университете) важно найти хорошую профессиональную среду. Конкретнее - научную группу, которая известна тем, что получает сильные результаты в одной из областей астрофизики. На первых порах репутация группы будет работать на молодого ученого. Но со временем он начнет зарабатывать и свою собственную репутацию профессионала, которая позволит ему получать новые хорошие позиции.
При этом надо помнить, что в современной астрофизике ученых-одиночек остается все меньше и меньше. Задачи становятся все сложнее, и решить их можно только коллективно, в рамках коллаборации.

– Может ли астрофизик сменить сферу своих профессиональных интересов?
– Обычно люди меняют темы, но в рамках своего направления. А вот сменить направление уже достаточно сложно. Например, если бы я вдруг захотел заняться внегалактической астрономией (разделом астрономии, изучающим объекты за пределами нашей галактики - прим. сайта ), мне было бы сложно сделать такой переход. Впрочем, задавшись целью, наверняка можно добрать необходимые знания.

– На какие предметы стоит делать упор старшеклассникам, которые хотят стать астрофизиками?
– В первую очередь на физику и математику. Причем я советую читать не только школьные учебники - порой они могут быть изданы двадцать лет назад, но и всевозможные дополнительные материалы - записи лекций современных ученых (русских и англоязычных), серьезный научпоп, проекты, направленные на углубленное понимание физики и математики.
Мне кажется, в современном мире знания уже не та сила. Проблемы с получением знаний нет - они все в интернете, и их просто искать. Главное - это понимание сути физических явлений. И именно это понимание необходимо начитать.
Также я рекомендовал бы школьникам изучать программирование, чтобы решать задачи не на бумажке с помощью калькулятора, а на компьютере. Также нужно знать английский язык и тренироваться искать информацию в интернете - не теряться среди большого количества данных и уметь находить нужные статьи.

– Сколько получает астрофизик?
– Чаще всего мы получаем 30–50 тысяч рублей в месяц, хотя порой зарплата колеблется от 15 до 150 тысяч в месяц. Сама ставка, как правило, очень маленькая, однако ученые получают также грантовое финансирование, премии, стимулирующие выплаты и т. д. Правда, часто человек заранее не знает, сколько он получит в следующем месяце. Это создает определенные неудобства.

– От чего может устать астрофизик?
– От большого количества работы, ведь многие ученые одновременно участвуют в нескольких проектах. Кроме того, напрягают постоянные дедлайны: нужно успеть самому подготовиться к конференции, подготовить статью, вовремя написать заявку на грант, а потом - отчет по гранту и т. д.

– Сколько статей в год должен выпускать ученый?
– Некоторые вузы вводят четкие критерии, сколько публикаций должно быть у их сотрудников. Мне кажется, у человека, который активно и хорошо работает, в год должно выходить по крайней мере 3–4 статьи, в которых он будет делать существенный вклад.
Однако если ученый работает в большой коллаборации (или даже нескольких коллаборациях), то статьи с его соавторством могут выходить десятками в год! Правда, надо понимать, что его вклад в них будет довольно мал.

– Чем может заняться астрофизик, решивший попробовать себя в чем-то новом?
– В принципе, он способен стать хорошим программистом или заняться преподаванием физики и астрономии. Можно также перейти в смежные физические специальности и устроиться работать в компанию, которая занимается разработкой различных технологий. Также этот специалист может податься в банковскую сферу и стать, например, аналитиком, ведь учеба на физическом факультете научила его аналитическому мышлению.

– Какие существуют кружки для школьников, которые хотят получить практические знания по астрофизике?
– Я сам преподаю в Астрошколе ГАИШ и в Астрофизической школе фонда «Траектория» . Фонд «Траектория», поддерживающий научные образовательные инициативы, организовал школу, собрав 40 заинтересованных восьмиклассников. В течение четырех лет с ними будут работать астрономы, физики, математики. Ребята делают много заочной работы, выполняют свои проекты, дважды в год выезжают на очные школы в разные научные институты. Надеюсь, учеба поможет школьникам прийти в университеты более подготовленными, а потом - стать сильными учеными. Пока что это первый набор, но, если этот опыт окажется успешным, надеюсь, этот проект будет реализован вновь и вновь.

– Что вы могли бы посоветовать почитать или посмотреть людям, которые хотят больше узнать о работе астрофизика?
– Рекомендую научно-популярную книгу «Далекие маяки Вселенной», написанную астрофизиком Павлом Амнуэлем, который занимался нейтронными звездами. Книга как раз рассказывает об истории открытия нейтронных звезд. В ней хорошо показан процесс поиска, размышлений, ошибок, находок и анализа. Также можно почитать «Понедельник начинается в субботу» Аркадия и Бориса Стругацких. Мне кажется, чувства по отношению к работе, которые испытывают герои этой книги, весьма похожи на то, что испытываем мы.
Еще можно посмотреть фильм «Контакт», созданный по одноименному роману астронома Карла Сагана, а также американский сериал «Теория большого взрыва» про молодых ученых.

– Человечество уже довольно хорошо понимает устройство Вселенной. Будут ли востребованы астрофизики в будущем?
– Как часто бывает в науке, количество вопросов пропорционально количеству нашего знания. Чем больше мы будем знать, тем больше новых задач будет возникать перед учеными. Поэтому, полагаю, астрофизикам еще долгое время будет, чем заниматься.

В переводе с древнегреческого языка астрономия – это наука, изучающая небесные тела. Еще с древности человечество проявляло интерес к звездам и планетам, их передвижению по небесному пространству. Так возникла профессия астроном.

Развитие астрономии дало человечеству знания, помогающие в ведении хозяйства, в путешествиях. Первым и немаловажным достижением, полученным в результате наблюдения за звездами, является изобретение солнечного и лунного календарей. В Древнем Китае за 2000 лет до нашей эры люди уже могли определять даты солнечных и лунных затмений.

Чем занимается астроном?

На первый взгляд профессия выглядит очень романтично, но на практике все иначе. Наблюдения за небесными объектами занимают лишь малую часть рабочего времени, остальное уходит на обработку данных, полученных в результате наблюдений. В настоящее время работа астронома несколько облегчена современными технологиями. С помощью компьютерных программ рассчитываются траектории небесных объектов, составляются звездные карты.

В астрономии существует несколько направлений: небесная механика, астрофизика, космология, астрономическое приборостроение. На практике астроном сосредотачивается на определенной тематике (будь то изучение галактик, планет или отдельных звезд). В результате такого разделения исследований возникла необходимость в координационных центрах. В рамках всего мира этой задачей занимается Международный астрономический союз.

За последние сто лет специфика работы астронома кардинально изменилась. Уже нет необходимости проводить многочасовые наблюдения за небесными объектами в обсерваториях. Исследователи Вселенной многие часы проводят перед мониторами компьютеров, обрабатывая данные, полученные с космических спутников. Но среди астрономов можно встретить настоящих фанатов своей профессии, которые с легкостью отказываются от комфорта современных офисов ради общения со Вселенной. Поэтому овладеть данной профессией под силу тем, кто жаждет узнать тайны звездного неба.

Выбрав профессию астронома, нужно помнить, что это наука, где результат своей работы сразу не увидишь. Значит, нужно иметь колоссальное терпение. Одним из главных личных качеств астронома должно быть стремление к открытиям. Также необходимо обладать усидчивостью и внимательностью. Профессиональный астроном должен иметь широкий кругозор, обладать аналитическим складом ума, уметь четко, доступно излагать доводы и мысли. Ведь работники науки часто пишут статьи для публикаций в журналах, готовят доклады для научных конференций.

Чтобы добиться успехов в профессии, необходимо также быть специалистом в нескольких науках: физике, математике, биологии, информатике. Как и в любой науке, результаты достижений в астрономии основываются на данных исследований, наблюдений и экспериментов. Хотя, в отличие от других направлений, астрономам эксперимент практически недоступен. В работе помогают современные компьютерные технологии и программы. С их помощью моделируются процессы, недоступные для наблюдения.

Где учится на астронома?

Карьерный рост астронома связан с определенными этапами обучения. Сначала это обучение в университете, затем поступление в аспирантуру, написание кандидатской диссертации, научная работа и т. д. Квалификационный разряд специалиста зависит от полученного научного звания, что непосредственно влияет на размер заработной платы. За успешные научные разработки представители данной профессии получают гранты.

Еще астроном имеет возможность реализовать себя в сфере преподавания. В астрономии существует несколько направлений: астрофизика, космология, физика галактик, звезд, астрономическое приборостроение. Поэтому специалистов можно разделить на три группы: наблюдатели, теоретики и занимающиеся астрономической аппаратурой. Суть работы наблюдателя состоит в разработке методики наблюдений за небесными телами, теоретики анализируют полученные данные, решают научные задачи, а специалисты по аппаратуре работают над созданием новых приборов.

На сегодняшний день профессия не пользуется популярностью, а значит, не является массовой. Стать астрономом возможно, только получив высшее образование. Профильное образование будущие астрономы получают в национальных университетах на механико-математических и физико-математических факультетах.

В последнее время профессия астронома становится все более востребованной, наблюдается астрономический бум. С появлением современных технологий, более мощных оптических телескопов появляются открытия в области астрономии одно за другим. Часть Нобелевских премий, присуждаемых в области физики, напрямую или косвенно связана с астрономией. Профессия астроном для тех, кто любит загадки и тайны, которых у Вселенной неограниченное количество.

Тема 1. Структура современной Вселенной

Единицы измерения в астрономии. Масштабы астрофизических объектов: звёзды, звёздные скопления, галактики и их скопления, обозримая Вселенная, воиды. Характеристики межзвёздной среды, структура Галактики.


Тема 2. Расширяющаяся Вселенная

Систематическое красное смещение галактик. Закон Хаббла. Космологический принцип. Ньютоновская модель расширяющейся Вселенной, критическая плотность. Уравнения Фридмана эволюции Вселенной. Основные космологические параметры. Стадии эволюции вещества (RD, MD, темная энергия).


Тема 3. Основы теории образования к/м структуры Вселенной.

Теория Джинса: основные уравнения, начальные условие, приближение, решение. Обобщение на случай расширяющейся Вселенной.


Тема 4. Классификация звезд..

Диаграмма Герцшпрунга-Рассела. Главная последовательность. Красные гиганты, сверхгиганты. Голубые гиганты. Массы, светимости, звездный ветер. Эволюционные треки.


Тема 5. Основы физики внутреннего строения звезд.

Приближенные уравнения равновесия звезды, основные свойства их решения. Энтальпия, теорема вириала для звезд. Более точные уравнения, учет переноса энергии. Характерные времена эволюции звёзд: динамическое, тепловое, ядерное.


Тема 6. Ядерные циклы, нейтринное излучение звезд..

Скорость реакций под барьером, фактор Гамова, S-фактор. Ядерные реакции звёзд главной последовательности: pp-цикл, CNO-цикл. Спектр солнечных нейтрино. Основные эксперименты по измерению потока солнечных нейтрино и их результаты (Хоумстейк, (Super-)Kamiokande, SAGE, Gallex, SNO, Borexino, …).


Тема 7. Релятивистские звезды

Уравнение состояние вырожденного электронного газа, нерелятивистский и релятивистский случаи. Предел Чандресекара для белых карликов. Нейтронизация вещества, нейтринное излучение, взрывы сверхновых, предел Оппенгеймера-Волкова.


Тема 8. Особенности эволюции двойных систем.

Точки Лагранжа. Полость Роша. Обмен вещества. Вспышки новых.


Тема 9. Аккреция.

Элементы теории аккреции вещества. Случаи сферически-симметричной (задача Бонди), цилиндрической, дисковой аккреции. Аккреция на нейтронные звезды (радиопульсар, пропеллер, аккретор и барстер, георотатор) и черные дыры (рентгеновское излучение).


Тема 10. Основные сведения о космических лучах (КЛ).

Основные понятия, интенсивность, состав, общая картина спектров (протонно-ядерная компонента, электроны, позитроны, гамма, антипротоны), «колено», «лодыжка». Классификация КЛ по происхождению (первичные и вторичные лучи, галактические и внегалактические, атмосферные и альбедо). Наблюдения КЛ.


Тема 11. Космическое гамма-излучение.

Основные эксперименты. Классификация по происхождению и типу источников: дискретное и рассеянное, распады π 0 «обратный Комптон», неразрешенные источники, изотропная компонента. Данные наблюдений. Зависимость интенсивности от плотности источников.


Тема 12. Космические заряженные частицы.

Основные источники (первичное ускорение). Распространение заряженных КЛ: диффузия в магн.полях, вторичное ускорение (механизмы Ферми), потери энергии (на фотонах среды, синхротрон, ионизацию), расчетные модели распространения в Галактике (leaky box, более точные уравнения переноса, программы расчета), Солнечные модуляции (модель силового поля, модель с учетом знака заряда). Данные о позитронах, антипротонах.


Тема 13. Космические лучи сверхвысоких энергий (КЛСВЭ)

Основные сведения, установки, данные, проблемы. Проблемы распространения для протонов (предел ГЗК), фотонов, электронов. Методы определение сорта первичной частицы по анализу ШАЛ, существующие результаты. Модели top-down, down-up и ограничения на них.



Что еще почитать